Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jul 22;271(1547):1467–1475. doi: 10.1098/rspb.2004.2750

Dynamics of jamming avoidance in echolocating bats.

Nachum Ulanovsky 1, M Brock Fenton 1, Asaf Tsoar 1, Carmi Korine 1
PMCID: PMC1691745  PMID: 15306318

Abstract

Animals using active sensing systems such as echolocation or electrolocation may experience interference from the signals of neighbouring conspecifics, which can be offset by a jamming avoidance response (JAR). Here, we report JAR in one echolocating bat (Tadarida teniotis: Molossidae) but not in another (Taphozous perforatus: Emballonuridae) when both flew and foraged with conspecifics. In T. teniotis, JAR consisted of shifts in the dominant frequencies of echolocation calls, enhancing differences among individuals. Larger spectral overlap of signals elicited stronger JAR. Tadarida teniotis showed two types of JAR: (i) for distant conspecifics: a symmetric JAR, with lower- and higher-frequency bats shifting their frequencies downwards and upwards, respectively, on average by the same amount; and (ii) for closer conspecifics: an asymmetric JAR, with only the upper-frequency bat shifting its frequency upwards. In comparison, 'wave-type' weakly electric fishes also shift frequencies of discharges in a JAR, but unlike T. teniotis, the shifts are either symmetric in some species or asymmetric in others. We hypothesize that symmetric JAR in T. teniotis serves to avoid jamming and improve echolocation, whereas asymmetric JAR may aid communication by helping to identify and locate conspecifics, thus minimizing chances of mid-air collisions.

Full Text

The Full Text of this article is available as a PDF (228.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burnett T. A., Freedland M. B., Larson C. R., Hain T. C. Voice F0 responses to manipulations in pitch feedback. J Acoust Soc Am. 1998 Jun;103(6):3153–3161. doi: 10.1121/1.423073. [DOI] [PubMed] [Google Scholar]
  2. Carr C. E., Heiligenberg W., Rose G. J. A time-comparison circuit in the electric fish midbrain. I. Behavior and physiology. J Neurosci. 1986 Jan;6(1):107–119. doi: 10.1523/JNEUROSCI.06-01-00107.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heiligenberg W., Metzner W., Wong C. J., Keller C. H. Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates. J Comp Physiol A. 1996 Nov;179(5):653–674. doi: 10.1007/BF00216130. [DOI] [PubMed] [Google Scholar]
  4. Hopkins C. D. Neuroethology of electric communication. Annu Rev Neurosci. 1988;11:497–535. doi: 10.1146/annurev.ne.11.030188.002433. [DOI] [PubMed] [Google Scholar]
  5. Kawasaki M. Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Curr Opin Neurobiol. 1997 Aug;7(4):473–479. doi: 10.1016/s0959-4388(97)80025-6. [DOI] [PubMed] [Google Scholar]
  6. Kramer B. Waveform discrimination, phase sensitivity and jamming avoidance in a wave-type electric fish . J Exp Biol. 1999 May;202(#):1387–1398. doi: 10.1242/jeb.202.10.1387. [DOI] [PubMed] [Google Scholar]
  7. Lawrence B. D., Simmons J. A. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am. 1982 Mar;71(3):585–590. doi: 10.1121/1.387529. [DOI] [PubMed] [Google Scholar]
  8. Masters W. M., Raver K. A. The degradation of distance discrimination in big brown bats (Eptesicus fuscus) caused by different interference signals. J Comp Physiol A. 1996 Nov;179(5):703–713. doi: 10.1007/BF00216134. [DOI] [PubMed] [Google Scholar]
  9. Metzner W. Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol. 1999 May;202(Pt 10):1365–1375. doi: 10.1242/jeb.202.10.1365. [DOI] [PubMed] [Google Scholar]
  10. Rydell J., Arlettaz R. Low-frequency echolocation enables the bat Tadarida teniotis to feed on tympanate insects. Proc Biol Sci. 1994 Aug 22;257(1349):175–178. doi: 10.1098/rspb.1994.0112. [DOI] [PubMed] [Google Scholar]
  11. SUTHERS R. A. ACOUSTIC ORIENTATION BY FISH-CATCHING BATS. J Exp Zool. 1965 Apr;158:319–342. doi: 10.1002/jez.1401580307. [DOI] [PubMed] [Google Scholar]
  12. Simmons G. H. Proprietary Medicines: Some General Considerations. Cal State J Med. 1906 Jul;4(7):195–200. [PMC free article] [PubMed] [Google Scholar]
  13. Speakman J. R., Racey P. A. No cost of echolocation for bats in flight. Nature. 1991 Apr 4;350(6317):421–423. doi: 10.1038/350421a0. [DOI] [PubMed] [Google Scholar]
  14. Summers W. V., Pisoni D. B., Bernacki R. H., Pedlow R. I., Stokes M. A. Effects of noise on speech production: acoustic and perceptual analyses. J Acoust Soc Am. 1988 Sep;84(3):917–928. doi: 10.1121/1.396660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Surlykke A., Moss C. F. Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am. 2000 Nov;108(5 Pt 1):2419–2429. doi: 10.1121/1.1315295. [DOI] [PubMed] [Google Scholar]
  16. Zelick R. Jamming avoidance in electric fish and frogs: strategies of signal oscillator timing. Brain Behav Evol. 1986;28(1-3):60–69. doi: 10.1159/000118692. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15306318s01.pdf (421.1KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES