Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jul 22;271(1547):1529–1535. doi: 10.1098/rspb.2004.2756

Bacteriocins, spite and virulence.

Andy Gardner 1, Stuart A West 1, Angus Buckling 1
PMCID: PMC1691756  PMID: 15306326

Abstract

There has been much interest in using social evolution theory to predict the damage to a host from parasite infection, termed parasite virulence. Most of this work has focused on how high kinship between the parasites infecting a host can select for more prudent exploitation of the host, leading to a negative relationship between virulence and parasite kinship. However, it has also been shown that if parasites can cooperate to overcome the host, then high parasite kinship within hosts can select for greater cooperation and higher growth rates, hence leading to a positive relationship between virulence and parasite kinship. We examine the impact of a spiteful behaviour, chemical (bacteriocin) warfare between microbes, on the evolution of virulence, and find a new relationship: virulence is maximized when the frequency of kin among parasites' social partners is low or high, and is minimized at intermediate values. This emphasizes how biological details can fundamentally alter the qualitative nature of theoretical predictions made by models of parasite virulence.

Full Text

The Full Text of this article is available as a PDF (129.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremermann H. J., Pickering J. A game-theoretical model of parasite virulence. J Theor Biol. 1983 Feb 7;100(3):411–426. doi: 10.1016/0022-5193(83)90438-1. [DOI] [PubMed] [Google Scholar]
  2. Brown Sam P., Hochberg Michael E., Grenfell Bryan T. Does multiple infection select for raised virulence? Trends Microbiol. 2002 Sep;10(9):401–405. doi: 10.1016/s0966-842x(02)02413-7. [DOI] [PubMed] [Google Scholar]
  3. Chao L., Hanley K. A., Burch C. L., Dahlberg C., Turner P. E. Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Q Rev Biol. 2000 Sep;75(3):261–275. doi: 10.1086/393499. [DOI] [PubMed] [Google Scholar]
  4. Chao L., Levin B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6324–6328. doi: 10.1073/pnas.78.10.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheung J., Danna K. J., O'Connor E. M., Price L. B., Shand R. F. Isolation, sequence, and expression of the gene encoding halocin H4, a bacteriocin from the halophilic archaeon Haloferax mediterranei R4. J Bacteriol. 1997 Jan;179(2):548–551. doi: 10.1128/jb.179.2.548-551.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Czárán Tamás L., Hoekstra Rolf F. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc Biol Sci. 2003 Jul 7;270(1522):1373–1378. doi: 10.1098/rspb.2003.2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Czárán Tamás L., Hoekstra Rolf F., Pagie Ludo. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A. 2002 Jan 15;99(2):786–790. doi: 10.1073/pnas.012399899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies C. M., Fairbrother E., Webster J. P. Mixed strain schistosome infections of snails and the evolution of parasite virulence. Parasitology. 2002 Jan;124(Pt 1):31–38. doi: 10.1017/s0031182001008873. [DOI] [PubMed] [Google Scholar]
  9. Day Troy, Burns James G. A consideration of patterns of virulence arising from host-parasite coevolution. Evolution. 2003 Mar;57(3):671–676. doi: 10.1111/j.0014-3820.2003.tb01558.x. [DOI] [PubMed] [Google Scholar]
  10. Frank S. A. A kin selection model for the evolution of virulence. Proc Biol Sci. 1992 Dec 22;250(1329):195–197. doi: 10.1098/rspb.1992.0149. [DOI] [PubMed] [Google Scholar]
  11. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  12. Gandon S., Mackinnon M. J., Nee S., Read A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001 Dec 13;414(6865):751–756. doi: 10.1038/414751a. [DOI] [PubMed] [Google Scholar]
  13. Ganusov Vitaly V., Antia Rustom. Trade-offs and the evolution of virulence of microparasites: do details matter? Theor Popul Biol. 2003 Sep;64(2):211–220. doi: 10.1016/s0040-5809(03)00063-7. [DOI] [PubMed] [Google Scholar]
  14. Hamilton W. D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science. 1967 Apr 28;156(3774):477–488. doi: 10.1126/science.156.3774.477. [DOI] [PubMed] [Google Scholar]
  15. Hamilton W. D. Selfish and spiteful behaviour in an evolutionary model. Nature. 1970 Dec 19;228(5277):1218–1220. doi: 10.1038/2281218a0. [DOI] [PubMed] [Google Scholar]
  16. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  17. Hurst L. D. The evolution of cytoplasmic incompatibility or when spite can be successful. J Theor Biol. 1991 Jan 21;148(2):269–277. doi: 10.1016/s0022-5193(05)80344-3. [DOI] [PubMed] [Google Scholar]
  18. Kerr Benjamin, Riley Margaret A., Feldman Marcus W., Bohannan Brendan J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002 Jul 11;418(6894):171–174. doi: 10.1038/nature00823. [DOI] [PubMed] [Google Scholar]
  19. Pen I. Reproductive effort in viscous populations. Evolution. 2000 Feb;54(1):293–297. doi: 10.1111/j.0014-3820.2000.tb00030.x. [DOI] [PubMed] [Google Scholar]
  20. Read A. F., Taylor L. H. The ecology of genetically diverse infections. Science. 2001 May 11;292(5519):1099–1102. doi: 10.1126/science.1059410. [DOI] [PubMed] [Google Scholar]
  21. Riley M. A., Goldstone C. M., Wertz J. E., Gordon D. A phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol. 2003 Jul;16(4):690–697. doi: 10.1046/j.1420-9101.2003.00575.x. [DOI] [PubMed] [Google Scholar]
  22. Riley M. A., Gordon D. M. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999 Mar;7(3):129–133. doi: 10.1016/s0966-842x(99)01459-6. [DOI] [PubMed] [Google Scholar]
  23. Riley Margaret A., Wertz John E. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002 Jan 30;56:117–137. doi: 10.1146/annurev.micro.56.012302.161024. [DOI] [PubMed] [Google Scholar]
  24. Schjørring Solveig, Koella Jacob C. Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc Biol Sci. 2003 Jan 22;270(1511):189–193. doi: 10.1098/rspb.2002.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmitt Manfred J., Breinig Frank. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev. 2002 Aug;26(3):257–276. doi: 10.1111/j.1574-6976.2002.tb00614.x. [DOI] [PubMed] [Google Scholar]
  26. Taylor P. D., Frank S. A. How to make a kin selection model. J Theor Biol. 1996 May 7;180(1):27–37. doi: 10.1006/jtbi.1996.0075. [DOI] [PubMed] [Google Scholar]
  27. Taylor P. D. Inclusive fitness arguments in genetic models of behaviour. J Math Biol. 1996;34(5-6):654–674. doi: 10.1007/BF02409753. [DOI] [PubMed] [Google Scholar]
  28. West Stuart A., Buckling Angus. Cooperation, virulence and siderophore production in bacterial parasites. Proc Biol Sci. 2003 Jan 7;270(1510):37–44. doi: 10.1098/rspb.2002.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Baalen M., Sabelis M. W. The scope for virulence management: a comment on Ewald's view on the evolution of virulence. Trends Microbiol. 1995 Nov;3(11):414–417. doi: 10.1016/s0966-842x(00)88991-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES