Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Aug 7;271(1548):1547–1555. doi: 10.1098/rspb.2004.2766

The effects of strain heterology on the epidemiology of equine influenza in a vaccinated population.

A W Park 1, J L N Wood 1, J M Daly 1, J R Newton 1, K Glass 1, W Henley 1, J A Mumford 1, B T Grenfell 1
PMCID: PMC1691760  PMID: 15306299

Abstract

We assess the effects of strain heterology (strains that are immunologically similar but not identical) on equine influenza in a vaccinated population. Using data relating to individual animals, for both homologous and heterologous vaccinees, we estimate distributions for the latent and infectious periods, quantify the risk of becoming infected in terms of the quantity of cross-reactive antibodies to a key surface protein of the virus (haemagglutinin) and estimate the probability of excreting virus (i.e. becoming infectious) given that infection has occurred. The data suggest that the infectious period, the risk of becoming infected (for a given vaccine-induced level of cross-reactive antibodies) and the probability of excreting virus are increased for heterologously vaccinated animals when compared with homologously vaccinated animals. The data are used to parameterize a modified susceptible, exposed, infectious and recovered/resistant (SEIR) model, which shows that these relatively small differences combine to have a large effect at the population level, where populations of heterologous vaccinees face a significantly increased risk of an epidemic occurring.

Full Text

The Full Text of this article is available as a PDF (134.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bizebard T., Barbey-Martin C., Fleury D., Gigant B., Barrère B., Skehel J. J., Knossow M. Structural studies on viral escape from antibody neutralization. Curr Top Microbiol Immunol. 2001;260:55–64. doi: 10.1007/978-3-662-05783-4_4. [DOI] [PubMed] [Google Scholar]
  2. Casagrande J. T., Pike M. C. An improved approximate formula for calculating sample sizes for comparing two binomial distributions. Biometrics. 1978 Sep;34(3):483–486. [PubMed] [Google Scholar]
  3. De Jong M. C., Kimman T. G. Experimental quantification of vaccine-induced reduction in virus transmission. Vaccine. 1994 Jun;12(8):761–766. doi: 10.1016/0264-410x(94)90229-1. [DOI] [PubMed] [Google Scholar]
  4. Diekmann O., Heesterbeek J. A., Metz J. A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–382. doi: 10.1007/BF00178324. [DOI] [PubMed] [Google Scholar]
  5. Dimmock N. J. Mechanisms of neutralization of animal viruses. J Gen Virol. 1984 Jun;65(Pt 6):1015–1022. doi: 10.1099/0022-1317-65-6-1015. [DOI] [PubMed] [Google Scholar]
  6. Ferguson Neil M., Galvani Alison P., Bush Robin M. Ecological and immunological determinants of influenza evolution. Nature. 2003 Mar 27;422(6930):428–433. doi: 10.1038/nature01509. [DOI] [PubMed] [Google Scholar]
  7. Fitch W. M., Bush R. M., Bender C. A., Cox N. J. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7712–7718. doi: 10.1073/pnas.94.15.7712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glass K., Wood J. L. N., Mumford J. A., Jesset D., Grenfell B. T. Modelling equine influenza 1: a stochastic model of within-yard epidemics. Epidemiol Infect. 2002 Jun;128(3):491–502. doi: 10.1017/s0950268802006829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grenfell Bryan T., Pybus Oliver G., Gog Julia R., Wood James L. N., Daly Janet M., Mumford Jenny A., Holmes Edward C. Unifying the epidemiological and evolutionary dynamics of pathogens. Science. 2004 Jan 16;303(5656):327–332. doi: 10.1126/science.1090727. [DOI] [PubMed] [Google Scholar]
  10. Hobson D., Curry R. L., Beare A. S., Ward-Gardner A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J Hyg (Lond) 1972 Dec;70(4):767–777. doi: 10.1017/s0022172400022610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keeling M. J., Grenfell B. T. Effect of variability in infection period on the persistence and spatial spread of infectious diseases. Math Biosci. 1998 Jan 15;147(2):207–226. doi: 10.1016/s0025-5564(97)00101-6. [DOI] [PubMed] [Google Scholar]
  12. Lloyd A. L. Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc Biol Sci. 2001 May 7;268(1470):985–993. doi: 10.1098/rspb.2001.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lloyd A. L. Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor Popul Biol. 2001 Aug;60(1):59–71. doi: 10.1006/tpbi.2001.1525. [DOI] [PubMed] [Google Scholar]
  14. Longini I. M., Jr, Datta S., Halloran M. E. Measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic HIV-1 vaccines. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Dec 15;13(5):440–447. doi: 10.1097/00042560-199612150-00007. [DOI] [PubMed] [Google Scholar]
  15. McCallum H., Barlow N., Hone J. How should pathogen transmission be modelled? Trends Ecol Evol. 2001 Jun 1;16(6):295–300. doi: 10.1016/s0169-5347(01)02144-9. [DOI] [PubMed] [Google Scholar]
  16. Morley P. S., Townsend H. G., Bogdan J. R., Haines D. M. Risk factors for disease associated with influenza virus infections during three epidemics in horses. J Am Vet Med Assoc. 2000 Feb 15;216(4):545–550. doi: 10.2460/javma.2000.216.545. [DOI] [PubMed] [Google Scholar]
  17. Mumford J. A. The equine influenza surveillance program. Adv Vet Med. 1999;41:379–387. doi: 10.1016/s0065-3519(99)80028-7. [DOI] [PubMed] [Google Scholar]
  18. Mumford J., Wood J. M., Scott A. M., Folkers C., Schild G. C. Studies with inactivated equine influenza vaccine. 2. Protection against experimental infection with influenza virus A/equine/Newmarket/79 (H3N8). J Hyg (Lond) 1983 Jun;90(3):385–395. doi: 10.1017/s0022172400029016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newton J. R., Lakhani K. H., Wood J. L., Baker D. J. Risk factors for equine influenza serum antibody titres in young thoroughbred racehorses given an inactivated vaccine. Prev Vet Med. 2000 Jul 20;46(2):129–141. doi: 10.1016/s0167-5877(00)00144-6. [DOI] [PubMed] [Google Scholar]
  20. Newton J. R., Townsend H. G., Wood J. L., Sinclair R., Hannant D., Mumford J. A. Immunity to equine influenza: relationship of vaccine-induced antibody in young Thoroughbred racehorses to protection against field infection with influenza A/equine-2 viruses (H3N8). Equine Vet J. 2000 Jan;32(1):65–74. doi: 10.2746/042516400777612116. [DOI] [PubMed] [Google Scholar]
  21. Park A. W., Wood J. L. N., Newton J. R., Daly J., Mumford J. A., Grenfell B. T. Optimising vaccination strategies in equine influenza. Vaccine. 2003 Jun 20;21(21-22):2862–2870. doi: 10.1016/s0264-410x(03)00156-7. [DOI] [PubMed] [Google Scholar]
  22. Plotkin Joshua B., Dushoff Jonathan, Levin Simon A. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):6263–6268. doi: 10.1073/pnas.082110799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rocha E., Cox N. J., Black R. A., Harmon M. W., Harrison C. J., Kendal A. P. Antigenic and genetic variation in influenza A (H1N1) virus isolates recovered from a persistently infected immunodeficient child. J Virol. 1991 May;65(5):2340–2350. doi: 10.1128/jvi.65.5.2340-2350.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SCHOLTENS R. G., STEELE J. H., DOWDLE W. R., YARBROUGH W. B., ROBINSON R. Q. U.S. EPIZOOTIC OF EQUINE INFLUENZA, 1963. Public Health Rep. 1964 May;79:393–402. [PMC free article] [PubMed] [Google Scholar]
  25. Schild G. C., Pereira M. S., Chakraverty P. Single-radial-hemolysis: a new method for the assay of antibody to influenza haemagglutinin. Applications for diagnosis and seroepidemiologic surveillance of influenza. Bull World Health Organ. 1975;52(1):43–50. [PMC free article] [PubMed] [Google Scholar]
  26. Smith D. J., Forrest S., Hightower R. R., Perelson A. S. Deriving shape space parameters from immunological data. J Theor Biol. 1997 Nov 21;189(2):141–150. doi: 10.1006/jtbi.1997.0495. [DOI] [PubMed] [Google Scholar]
  27. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992 Mar;56(1):152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wiley D. C., Wilson I. A., Skehel J. J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981 Jan 29;289(5796):373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]
  29. Wood J. L. N., Newton J. R., Daly J., Park A. W., Mumford J. A. It's all in the mix: infection transmission in populations. Equine Vet J. 2003 Sep;35(6):526–528. doi: 10.2746/042516403775467315. [DOI] [PubMed] [Google Scholar]
  30. Yates P., Mumford J. A. Equine influenza vaccine efficacy: the significance of antigenic variation. Vet Microbiol. 2000 May 22;74(1-2):173–177. doi: 10.1016/s0378-1135(00)00177-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES