Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Aug 7;271(1548):1557–1564. doi: 10.1098/rspb.2004.2736

Major histocompatibility complex controls the trajectory but not host-specific adaptation during virulence evolution of the pathogenic fungus Cryptococcus neoformans.

Erin E McClelland 1, Frederick R Adler 1, Donald L Granger 1, Wayne K Potts 1
PMCID: PMC1691764  PMID: 15306300

Abstract

Genes of the major histocompatibility complex (MHC) play a critical role in immune recognition and are the most genetically diverse loci known. One hypothesis to explain this diversity postulates that pathogens adapt to common MHC haplotypes and thus favour selection of new or rare alleles. To determine whether the pathogenic yeast Cryptococcus neoformans adapts to MHC-dependent immune responses, it was serially passaged in two independent replicate lines of five B10 MHC-congenic strains and Balb/c mice. All passaged lines increased in virulence as measured by reduced host survival. MHC influenced the rate (trajectory) of virulence increase during passages as measured by significant differences in mortality rate (p < 0.001). However, when the post-passage strains were tested, no MHC differences in mortality rate remained and only minor differences in titres were observed. Also contrary to expectations, increased virulence in three lines passaged in B10 mice had a larger effect in Balb/c mice, and the evolution of virulence in lines passaged in alternating hosts was not retarded. To our knowledge, these data represent the first experimental test of MHC-specific adaptation in a non-viral pathogen. The failure to observe MHC effects despite dramatically increased virulence and host-genotype-specific adaptation to non-MHC genes suggests that escape of MHC-dependent immune recognition may be difficult for pathogens with unlimited epitopes or that other virulence factors can swamp MHC effects.

Full Text

The Full Text of this article is available as a PDF (154.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M., O'Connor D. H., Jing P., Dzuris J. L., Mothé B. R., Vogel T. U., Dunphy E., Liebl M. E., Emerson C., Wilson N. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature. 2000 Sep 21;407(6802):386–390. doi: 10.1038/35030124. [DOI] [PubMed] [Google Scholar]
  2. Apanius V., Penn D., Slev P. R., Ruff L. R., Potts W. K. The nature of selection on the major histocompatibility complex. Crit Rev Immunol. 1997;17(2):179–224. doi: 10.1615/critrevimmunol.v17.i2.40. [DOI] [PubMed] [Google Scholar]
  3. Baum H., Staines N. A. MHC-derived peptides and the CD4+ T-cell repertoire: implications for autoimmune disease. Cytokines Cell Mol Ther. 1997 Jun;3(2):115–125. [PubMed] [Google Scholar]
  4. Bertoletti A., Sette A., Chisari F. V., Penna A., Levrero M., De Carli M., Fiaccadori F., Ferrari C. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature. 1994 Jun 2;369(6479):407–410. doi: 10.1038/369407a0. [DOI] [PubMed] [Google Scholar]
  5. Blake Judith A., Richardson Joel E., Bult Carol J., Kadin Jim A., Eppig Janan T., Mouse Genome Database Group The Mouse Genome Database (MGD): the model organism database for the laboratory mouse. Nucleic Acids Res. 2002 Jan 1;30(1):113–115. doi: 10.1093/nar/30.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bodmer W. F. Evolutionary significance of the HL-A system. Nature. 1972 May 19;237(5351):139–passim. doi: 10.1038/237139a0. [DOI] [PubMed] [Google Scholar]
  7. Borghans José A. M., Beltman Joost B., De Boer Rob J. MHC polymorphism under host-pathogen coevolution. Immunogenetics. 2004 Jan 13;55(11):732–739. doi: 10.1007/s00251-003-0630-5. [DOI] [PubMed] [Google Scholar]
  8. Brown E. G., Liu H., Kit L. C., Baird S., Nesrallah M. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci U S A. 2001 May 22;98(12):6883–6888. doi: 10.1073/pnas.111165798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campisi E., Mancianti F., Pini G., Faggi E., Gargani G. Investigation in Central Italy of the possible association between Cryptococcus neoformans var. Gattii and Eucalyptus camaldulensis. Eur J Epidemiol. 2003;18(4):357–362. doi: 10.1023/a:1023652920595. [DOI] [PubMed] [Google Scholar]
  10. Carrington M., Nelson G. W., Martin M. P., Kissner T., Vlahov D., Goedert J. J., Kaslow R., Buchbinder S., Hoots K., O'Brien S. J. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science. 1999 Mar 12;283(5408):1748–1752. doi: 10.1126/science.283.5408.1748. [DOI] [PubMed] [Google Scholar]
  11. Carrington Mary, Bontrop Ronald E. Effects of MHC class I on HIV/SIV disease in primates. AIDS. 2002;16 (Suppl 4):S105–S114. doi: 10.1097/00002030-200216004-00015. [DOI] [PubMed] [Google Scholar]
  12. Carroll L. S., Potts W. K. Accumulated background variation among H2 mutant congenic strains: elimination through PCR-based genotyping of F2 segregants. J Immunol Methods. 2001 Nov 1;257(1-2):137–143. doi: 10.1016/s0022-1759(01)00456-2. [DOI] [PubMed] [Google Scholar]
  13. Crill W. D., Wichman H. A., Bull J. J. Evolutionary reversals during viral adaptation to alternating hosts. Genetics. 2000 Jan;154(1):27–37. doi: 10.1093/genetics/154.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dobson C., Owen M. E. Influence of serial passage on the infectivity and immunogenicity of Nematospiroides dubius in mice. Int J Parasitol. 1977 Dec;7(6):463–466. doi: 10.1016/0020-7519(77)90007-8. [DOI] [PubMed] [Google Scholar]
  15. Ebert D. Experimental evolution of parasites. Science. 1998 Nov 20;282(5393):1432–1435. doi: 10.1126/science.282.5393.1432. [DOI] [PubMed] [Google Scholar]
  16. Ebert Dieter, Bull James J. Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol. 2003 Jan;11(1):15–20. doi: 10.1016/s0966-842x(02)00003-3. [DOI] [PubMed] [Google Scholar]
  17. Evans D. T., O'Connor D. H., Jing P., Dzuris J. L., Sidney J., da Silva J., Allen T. M., Horton H., Venham J. E., Rudersdorf R. A. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nat Med. 1999 Nov;5(11):1270–1276. doi: 10.1038/15224. [DOI] [PubMed] [Google Scholar]
  18. Fischer H. G., Dörfler R., Schade B., Hadding U. Differential CD86/B7-2 expression and cytokine secretion induced by Toxoplasma gondii in macrophages from resistant or susceptible BALB H-2 congenic mice. Int Immunol. 1999 Mar;11(3):341–349. doi: 10.1093/intimm/11.3.341. [DOI] [PubMed] [Google Scholar]
  19. Gerlai R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 1996 May;19(5):177–181. doi: 10.1016/s0166-2236(96)20020-7. [DOI] [PubMed] [Google Scholar]
  20. Glazier Anne M., Nadeau Joseph H., Aitman Timothy J. Finding genes that underlie complex traits. Science. 2002 Dec 20;298(5602):2345–2349. doi: 10.1126/science.1076641. [DOI] [PubMed] [Google Scholar]
  21. Hildesheim Allan, Wang Sophia S. Host and viral genetics and risk of cervical cancer: a review. Virus Res. 2002 Nov;89(2):229–240. doi: 10.1016/s0168-1702(02)00191-0. [DOI] [PubMed] [Google Scholar]
  22. Hosono S., Tai P. C., Wang W., Ambrose M., Hwang D. G., Yuan T. T., Peng B. H., Yang C. S., Lee C. S., Shih C. Core antigen mutations of human hepatitis B virus in hepatomas accumulate in MHC class II-restricted T cell epitopes. Virology. 1995 Sep 10;212(1):151–162. doi: 10.1006/viro.1995.1463. [DOI] [PubMed] [Google Scholar]
  23. Kaltz Oliver, Bell Graham. The ecology and genetics of fitness in Chlamydomonas. XII. Repeated sexual episodes increase rates of adaptation to novel environments. Evolution. 2002 Sep;56(9):1743–1753. doi: 10.1111/j.0014-3820.2002.tb00188.x. [DOI] [PubMed] [Google Scholar]
  24. Mackinnon M. J., Gaffney D. J., Read A. F. Virulence in rodent malaria: host genotype by parasite genotype interactions. Infect Genet Evol. 2002 Jul;1(4):287–296. doi: 10.1016/s1567-1348(02)00039-4. [DOI] [PubMed] [Google Scholar]
  25. McClelland Erin E., Granger Donald L., Potts Wayne K. Major histocompatibility complex-dependent susceptibility to Cryptococcus neoformans in mice. Infect Immun. 2003 Aug;71(8):4815–4817. doi: 10.1128/IAI.71.8.4815-4817.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McClelland Erin E., Penn Dustin J., Potts Wayne K. Major histocompatibility complex heterozygote superiority during coinfection. Infect Immun. 2003 Apr;71(4):2079–2086. doi: 10.1128/IAI.71.4.2079-2086.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McMichael A. J., Phillips R. E. Escape of human immunodeficiency virus from immune control. Annu Rev Immunol. 1997;15:271–296. doi: 10.1146/annurev.immunol.15.1.271. [DOI] [PubMed] [Google Scholar]
  28. Meadows Richard L., MacWilliams Peter S., Dzata Gladstone, Meinen Jeffrey. Chylothorax associated with cryptococcal mediastinal granuloma in a cat. Vet Clin Pathol. 1993;22(4):109–116. doi: 10.1111/j.1939-165x.1993.tb00662.x. [DOI] [PubMed] [Google Scholar]
  29. Messenger S. L., Molineux I. J., Bull J. J. Virulence evolution in a virus obeys a trade-off. Proc Biol Sci. 1999 Feb 22;266(1417):397–404. doi: 10.1098/rspb.1999.0651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murray J. S., Ferrandis-Edwards D., Wolfe C. J., Schountz T. Major histocompatibility complex regulation of T helper functions mapped to a peptide C terminus that controls ligand density. Eur J Immunol. 1994 Oct;24(10):2337–2344. doi: 10.1002/eji.1830241012. [DOI] [PubMed] [Google Scholar]
  31. O'Toole Therese E., Sato Amy F., Rozanski Elizabeth A. Cryptococcosis of the central nervous system in a dog. J Am Vet Med Assoc. 2003 Jun 15;222(12):1722-5, 1706. doi: 10.2460/javma.2003.222.1722. [DOI] [PubMed] [Google Scholar]
  32. Perfect J. R., Lang S. D., Durack D. T. Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol. 1980 Oct;101(1):177–194. [PMC free article] [PubMed] [Google Scholar]
  33. Pewe L., Wu G. F., Barnett E. M., Castro R. F., Perlman S. Cytotoxic T cell-resistant variants are selected in a virus-induced demyelinating disease. Immunity. 1996 Sep;5(3):253–262. doi: 10.1016/s1074-7613(00)80320-9. [DOI] [PubMed] [Google Scholar]
  34. Pircher H., Moskophidis D., Rohrer U., Bürki K., Hengartner H., Zinkernagel R. M. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature. 1990 Aug 16;346(6285):629–633. doi: 10.1038/346629a0. [DOI] [PubMed] [Google Scholar]
  35. Potts W. K., Slev P. R. Pathogen-based models favoring MHC genetic diversity. Immunol Rev. 1995 Feb;143:181–197. doi: 10.1111/j.1600-065x.1995.tb00675.x. [DOI] [PubMed] [Google Scholar]
  36. Preston B. D., Poiesz B. J., Loeb L. A. Fidelity of HIV-1 reverse transcriptase. Science. 1988 Nov 25;242(4882):1168–1171. doi: 10.1126/science.2460924. [DOI] [PubMed] [Google Scholar]
  37. Regoes R. R., Nowak M. A., Bonhoeffer S. Evolution of virulence in a heterogeneous host population. Evolution. 2000 Feb;54(1):64–71. doi: 10.1111/j.0014-3820.2000.tb00008.x. [DOI] [PubMed] [Google Scholar]
  38. Roberts J. D., Bebenek K., Kunkel T. A. The accuracy of reverse transcriptase from HIV-1. Science. 1988 Nov 25;242(4882):1171–1173. doi: 10.1126/science.2460925. [DOI] [PubMed] [Google Scholar]
  39. Saha B. K., Cullen S. E. Molecular mapping of murine I region recombinants: crossing over in the E beta gene. J Immunol. 1986 Feb 1;136(3):1112–1116. [PubMed] [Google Scholar]
  40. Takahata N., Nei M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics. 1990 Apr;124(4):967–978. doi: 10.1093/genetics/124.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thursz M. R., Thomas H. C., Greenwood B. M., Hill A. V. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat Genet. 1997 Sep;17(1):11–12. doi: 10.1038/ng0997-11. [DOI] [PubMed] [Google Scholar]
  42. Wolfer D. P., Lipp H. P. Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp Physiol. 2000 Nov;85(6):627–634. [PubMed] [Google Scholar]
  43. Woolhouse Mark E. J. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 2002;10(10 Suppl):S3–S7. doi: 10.1016/s0966-842x(02)02428-9. [DOI] [PubMed] [Google Scholar]
  44. Woolhouse Mark E. J., Webster Joanne P., Domingo Esteban, Charlesworth Brian, Levin Bruce R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet. 2002 Dec;32(4):569–577. doi: 10.1038/ng1202-569. [DOI] [PubMed] [Google Scholar]
  45. Yagi Ryoji, Suzuki Wataru, Seki Noriyasu, Kohyama Masako, Inoue Tadahiro, Arai Takao, Kubo Masato. The IL-4 production capability of different strains of naive CD4(+) T cells controls the direction of the T(h) cell response. Int Immunol. 2002 Jan;14(1):1–11. doi: 10.1093/intimm/14.1.1. [DOI] [PubMed] [Google Scholar]
  46. Yewdell J. W., Bennink J. R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol. 1999;17:51–88. doi: 10.1146/annurev.immunol.17.1.51. [DOI] [PubMed] [Google Scholar]
  47. Yoshida A., Koide Y., Uchijima M., Yoshida T. O. Dissection of strain difference in acquired protective immunity against Mycobacterium bovis Calmette-Guérin bacillus (BCG). Macrophages regulate the susceptibility through cytokine network and the induction of nitric oxide synthase. J Immunol. 1995 Aug 15;155(4):2057–2066. [PubMed] [Google Scholar]
  48. de Campos-Lima P. O., Levitsky V., Brooks J., Lee S. P., Hu L. F., Rickinson A. B., Masucci M. G. T cell responses and virus evolution: loss of HLA A11-restricted CTL epitopes in Epstein-Barr virus isolates from highly A11-positive populations by selective mutation of anchor residues. J Exp Med. 1994 Apr 1;179(4):1297–1305. doi: 10.1084/jem.179.4.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES