Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Aug 7;271(1548):1611–1615. doi: 10.1098/rspb.2004.2762

Direct and indirect immunosuppression by a malaria parasite in its mosquito vector.

Christophe Boëte 1, Richard E L Paul 1, Jacob C Koella 1
PMCID: PMC1691770  PMID: 15306308

Abstract

Malaria parasites develop as oocysts within the haemocoel of their mosquito vector during a period that is longer than the average lifespan of many of their vectors. How can they escape from the mosquito's immune responses during their long development? Whereas older oocysts might camouflage themselves by incorporating mosquito-derived proteins into their surface capsule, younger stages are susceptible to the mosquito's immune response and must rely on other methods of immune evasion. We show that the malaria parasite Plasmodium gallinaceum suppresses the encapsulation immune response of its mosquito vector, Aedes aegypti, and in particular that the parasite uses both an indirect and a direct strategy for immunosuppression. Thus, when we fed mosquitoes with the plasma of infected chickens, the efficacy of the mosquitoes to encapsulate negatively charged Sephadex beads was considerably reduced, whether the parasite was present in the blood meal or not. In addition, zygotes that were created ex vivo and added to the blood of uninfected chickens reduced the efficacy of the encapsulation response. As dead zygotes had no effect on encapsulation, this result demonstrates active suppression of the mosquito's immune response by malaria parasites.

Full Text

The Full Text of this article is available as a PDF (82.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barillas-Mury C., Wizel B., Han Y. S. Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development. Insect Biochem Mol Biol. 2000 Jun;30(6):429–442. doi: 10.1016/s0965-1748(00)00018-7. [DOI] [PubMed] [Google Scholar]
  2. Boëte C., Paul R. E. L., Koella J. C. Reduced efficacy of the immune melanization response in mosquitoes infected by malaria parasites. Parasitology. 2002 Aug;125(Pt 2):93–98. doi: 10.1017/s0031182002001944. [DOI] [PubMed] [Google Scholar]
  3. Chun J., Riehle M., Paskewitz S. M. Effect of mosquito age and reproductive status on melanization of sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. J Invertebr Pathol. 1995 Jul;66(1):11–17. doi: 10.1006/jipa.1995.1054. [DOI] [PubMed] [Google Scholar]
  4. Collins F. H., Sakai R. K., Vernick K. D., Paskewitz S., Seeley D. C., Miller L. H., Collins W. E., Campbell C. C., Gwadz R. W. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science. 1986 Oct 31;234(4776):607–610. doi: 10.1126/science.3532325. [DOI] [PubMed] [Google Scholar]
  5. Ferguson Heather M., Read Andrew F. Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol. 2002 Jun;18(6):256–261. doi: 10.1016/s1471-4922(02)02281-x. [DOI] [PubMed] [Google Scholar]
  6. Gorman M. J., Paskewitz S. M. A genetic study of a melanization response to Sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. Am J Trop Med Hyg. 1997 Apr;56(4):446–451. doi: 10.4269/ajtmh.1997.56.446. [DOI] [PubMed] [Google Scholar]
  7. Gouagna L. C., Mulder B., Noubissi E., Tchuinkam T., Verhave J. P., Boudin C. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy. Trop Med Int Health. 1998 Jan;3(1):21–28. doi: 10.1046/j.1365-3156.1998.00156.x. [DOI] [PubMed] [Google Scholar]
  8. Juris Stephen J., Shao Feng, Dixon Jack E. Yersinia effectors target mammalian signalling pathways. Cell Microbiol. 2002 Apr;4(4):201–211. doi: 10.1046/j.1462-5822.2002.00182.x. [DOI] [PubMed] [Google Scholar]
  9. Kaushal D. C., Carter R., Rener J., Grotendorst C. A., Miller L. H., Howard R. J. Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. J Immunol. 1983 Nov;131(5):2557–2562. [PubMed] [Google Scholar]
  10. Koella J. C. An evolutionary view of the interactions between anopheline mosquitoes and malaria parasites. Microbes Infect. 1999 Apr;1(4):303–308. doi: 10.1016/s1286-4579(99)80026-4. [DOI] [PubMed] [Google Scholar]
  11. Koella J. C., Sørensen F. L., Anderson R. A. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc Biol Sci. 1998 May 7;265(1398):763–768. doi: 10.1098/rspb.1998.0358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lackie A. M., Gavin S. Uptake and persistence of ingested antibody in the mosquito Anopheles stephensi. Med Vet Entomol. 1989 Jul;3(3):225–230. doi: 10.1111/j.1365-2915.1989.tb00220.x. [DOI] [PubMed] [Google Scholar]
  13. Moret Y., Schmid-Hempel P. Survival for immunity: the price of immune system activation for bumblebee workers. Science. 2000 Nov 10;290(5494):1166–1168. doi: 10.1126/science.290.5494.1166. [DOI] [PubMed] [Google Scholar]
  14. Osta Mike A., Christophides George K., Kafatos Fotis C. Effects of mosquito genes on Plasmodium development. Science. 2004 Mar 26;303(5666):2030–2032. doi: 10.1126/science.1091789. [DOI] [PubMed] [Google Scholar]
  15. Paskewitz S., Riehle M. A. Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Dev Comp Immunol. 1994 Sep-Oct;18(5):369–375. doi: 10.1016/0145-305x(94)90002-7. [DOI] [PubMed] [Google Scholar]
  16. Rizki R. M., Rizki T. M. Parasitoid virus-like particles destroy Drosophila cellular immunity. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8388–8392. doi: 10.1073/pnas.87.21.8388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rizki T. M., Rizki R. M. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol. 1992 Mar-Jun;16(2-3):103–110. doi: 10.1016/0145-305x(92)90011-z. [DOI] [PubMed] [Google Scholar]
  18. Schmid-Hempel Paul. Variation in immune defence as a question of evolutionary ecology. Proc Biol Sci. 2003 Feb 22;270(1513):357–366. doi: 10.1098/rspb.2002.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz Alex, Koella Jacob C. Melanization of plasmodium falciparum and C-25 sephadex beads by field-caught Anopheles gambiae (Diptera: Culicidae) from southern Tanzania. J Med Entomol. 2002 Jan;39(1):84–88. doi: 10.1603/0022-2585-39.1.84. [DOI] [PubMed] [Google Scholar]
  20. Vaughan J. A., Noden B. H., Beier J. C. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. J Parasitol. 1992 Aug;78(4):716–724. [PubMed] [Google Scholar]
  21. Vaughan J. A., Wirtz R. A., do Rosario V. E., Azad A. F. Quantitation of antisporozoite immunoglobulins in the hemolymph of Anopheles stephensi after bloodfeeding. Am J Trop Med Hyg. 1990 Jan;42(1):10–16. doi: 10.4269/ajtmh.1990.42.10. [DOI] [PubMed] [Google Scholar]
  22. Zambrano-Villa Sergio, Rosales-Borjas Disney, Carrero Julio César, Ortiz-Ortiz Librado. How protozoan parasites evade the immune response. Trends Parasitol. 2002 Jun;18(6):272–278. doi: 10.1016/s1471-4922(02)02289-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES