Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Aug 7;271(1548):1571–1576. doi: 10.1098/rspb.2004.2768

Telomere loss in relation to age and early environment in long-lived birds.

Margaret E Hall 1, Lubna Nasir 1, Francis Daunt 1, Elizabeth A Gault 1, John P Croxall 1, Sarah Wanless 1, Pat Monaghan 1
PMCID: PMC1691772  PMID: 15306302

Abstract

Shortening of telomeres, specific nucleotide repeats that cap eukaryotic chromosomes, is thought to play an important role in cellular and organismal senescence. We examined telomere dynamics in two long-lived seabirds, the European shag and the wandering albatross. Telomere length in blood cells declines between the chick stage and adulthood in both species. However, among adults, telomere length is not related to age. This is consistent with reports of most telomere loss occurring early in life in other vertebrates. Thus, caution must be used in estimating annual rates of telomere loss, as these are probably not constant with age. We also measured changes within individuals in the wild, using repeat samples taken from individual shags as chicks and adults. We found high inter-individual variation in the magnitude of telomere loss, much of which was explained by circumstances during growth. Individuals laying down high tissue mass for their size showed greater telomere shortening. Independently of this, individuals born late in the season showed more telomere loss. Early conditions, possibly through their effects on oxidative stress, appear to play an important role in telomere attrition and thus potentially in the longevity of individuals.

Full Text

The Full Text of this article is available as a PDF (142.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allsopp R. C., Harley C. B. Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res. 1995 Jul;219(1):130–136. doi: 10.1006/excr.1995.1213. [DOI] [PubMed] [Google Scholar]
  2. Aviv Abraham, Levy Daniel, Mangel Marc. Growth, telomere dynamics and successful and unsuccessful human aging. Mech Ageing Dev. 2003 Jul;124(7):829–837. doi: 10.1016/s0047-6374(03)00143-x. [DOI] [PubMed] [Google Scholar]
  3. Baird Duncan M., Rowson Jan, Wynford-Thomas David, Kipling David. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet. 2003 Jan 21;33(2):203–207. doi: 10.1038/ng1084. [DOI] [PubMed] [Google Scholar]
  4. Bird Joseph, Ostler Elizabeth L., Faragher Richard G. A. Can we say that senescent cells cause ageing? Exp Gerontol. 2003 Nov-Dec;38(11-12):1319–1326. doi: 10.1016/j.exger.2003.09.011. [DOI] [PubMed] [Google Scholar]
  5. Brümmendorf Tim H., Mak Jennifer, Sabo Kathleen M., Baerlocher Gabriela M., Dietz Klaus, Abkowitz Janis L., Lansdorp Peter M. Longitudinal studies of telomere length in feline blood cells: implications for hematopoietic stem cell turnover in vivo. Exp Hematol. 2002 Oct;30(10):1147–1152. doi: 10.1016/s0301-472x(02)00888-3. [DOI] [PubMed] [Google Scholar]
  6. Campisi J. Replicative senescence: an old lives' tale? Cell. 1996 Feb 23;84(4):497–500. doi: 10.1016/s0092-8674(00)81023-5. [DOI] [PubMed] [Google Scholar]
  7. Cherif H., Tarry J. L., Ozanne S. E., Hales C. N. Ageing and telomeres: a study into organ- and gender-specific telomere shortening. Nucleic Acids Res. 2003 Mar 1;31(5):1576–1583. doi: 10.1093/nar/gkg208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coviello-McLaughlin G. M., Prowse K. R. Telomere length regulation during postnatal development and ageing in Mus spretus. Nucleic Acids Res. 1997 Aug 1;25(15):3051–3058. doi: 10.1093/nar/25.15.3051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delany M. E., Krupkin A. B., Miller M. M. Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening. Cytogenet Cell Genet. 2000;90(1-2):139–145. doi: 10.1159/000015649. [DOI] [PubMed] [Google Scholar]
  10. Desai M., Hales C. N. Role of fetal and infant growth in programming metabolism in later life. Biol Rev Camb Philos Soc. 1997 May;72(2):329–348. doi: 10.1017/s0006323196005026. [DOI] [PubMed] [Google Scholar]
  11. Frenck R. W., Jr, Blackburn E. H., Shannon K. M. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5607–5610. doi: 10.1073/pnas.95.10.5607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friedrich U., Schwab M., Griese E. U., Fritz P., Klotz U. Telomeres in neonates: new insights in fetal hematopoiesis. Pediatr Res. 2001 Feb;49(2):252–256. doi: 10.1203/00006450-200102000-00020. [DOI] [PubMed] [Google Scholar]
  13. Griffiths R., Double M. C., Orr K., Dawson R. J. A DNA test to sex most birds. Mol Ecol. 1998 Aug;7(8):1071–1075. doi: 10.1046/j.1365-294x.1998.00389.x. [DOI] [PubMed] [Google Scholar]
  14. Harley C. B., Futcher A. B., Greider C. W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990 May 31;345(6274):458–460. doi: 10.1038/345458a0. [DOI] [PubMed] [Google Scholar]
  15. Haussmann Mark F., Vleck Carol M., Nisbet Ian C. T. Calibrating the telomere clock in common terns, Sterna hirundo. Exp Gerontol. 2003 Jul;38(7):787–789. doi: 10.1016/s0531-5565(03)00109-8. [DOI] [PubMed] [Google Scholar]
  16. Haussmann Mark F., Winkler David W., O'Reilly Kathleen M., Huntington Charles E., Nisbet Ian C. T., Vleck Carol M. Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc Biol Sci. 2003 Jul 7;270(1522):1387–1392. doi: 10.1098/rspb.2003.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jeanclos E., Schork N. J., Kyvik K. O., Kimura M., Skurnick J. H., Aviv A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension. 2000 Aug;36(2):195–200. doi: 10.1161/01.hyp.36.2.195. [DOI] [PubMed] [Google Scholar]
  18. Jennings B. J., Ozanne S. E., Dorling M. W., Hales C. N. Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett. 1999 Apr 1;448(1):4–8. doi: 10.1016/s0014-5793(99)00336-1. [DOI] [PubMed] [Google Scholar]
  19. Jennings B. J., Ozanne S. E., Hales C. N. Nutrition, oxidative damage, telomere shortening, and cellular senescence: individual or connected agents of aging? Mol Genet Metab. 2000 Sep-Oct;71(1-2):32–42. doi: 10.1006/mgme.2000.3077. [DOI] [PubMed] [Google Scholar]
  20. Karlseder Jan, Smogorzewska Agata, de Lange Titia. Senescence induced by altered telomere state, not telomere loss. Science. 2002 Mar 29;295(5564):2446–2449. doi: 10.1126/science.1069523. [DOI] [PubMed] [Google Scholar]
  21. Kirkwood T. B. L. Molecular gerontology. J Inherit Metab Dis. 2002 May;25(3):189–196. doi: 10.1023/a:1015625811569. [DOI] [PubMed] [Google Scholar]
  22. Lindström J. Early development and fitness in birds and mammals. Trends Ecol Evol. 1999 Sep;14(9):343–348. doi: 10.1016/s0169-5347(99)01639-0. [DOI] [PubMed] [Google Scholar]
  23. Marcand S., Brevet V., Gilson E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 1999 Jun 15;18(12):3509–3519. doi: 10.1093/emboj/18.12.3509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Metcalfe N. B., Monaghan P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001 May 1;16(5):254–260. doi: 10.1016/s0169-5347(01)02124-3. [DOI] [PubMed] [Google Scholar]
  25. Metcalfe Neil B., Monaghan Pat. Growth versus lifespan: perspectives from evolutionary ecology. Exp Gerontol. 2003 Sep;38(9):935–940. doi: 10.1016/s0531-5565(03)00159-1. [DOI] [PubMed] [Google Scholar]
  26. doi: 10.1098/rspb.1999.0805. [DOI] [PMC free article] [Google Scholar]
  27. Rufer N., Brümmendorf T. H., Kolvraa S., Bischoff C., Christensen K., Wadsworth L., Schulzer M., Lansdorp P. M. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med. 1999 Jul 19;190(2):157–167. doi: 10.1084/jem.190.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Serra Violeta, von Zglinicki Thomas, Lorenz Mario, Saretzki Gabriele. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem. 2002 Dec 9;278(9):6824–6830. doi: 10.1074/jbc.M207939200. [DOI] [PubMed] [Google Scholar]
  29. Slagboom P. E., Droog S., Boomsma D. I. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994 Nov;55(5):876–882. [PMC free article] [PubMed] [Google Scholar]
  30. Vaziri H., Dragowska W., Allsopp R. C., Thomas T. E., Harley C. B., Lansdorp P. M. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9857–9860. doi: 10.1073/pnas.91.21.9857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vaziri H., Schächter F., Uchida I., Wei L., Zhu X., Effros R., Cohen D., Harley C. B. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993 Apr;52(4):661–667. [PMC free article] [PubMed] [Google Scholar]
  32. Zeichner S. L., Palumbo P., Feng Y., Xiao X., Gee D., Sleasman J., Goodenow M., Biggar R., Dimitrov D. Rapid telomere shortening in children. Blood. 1999 May 1;93(9):2824–2830. [PubMed] [Google Scholar]
  33. von Zglinicki Thomas. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002 Jul;27(7):339–344. doi: 10.1016/s0968-0004(02)02110-2. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15306302s01.pdf (154.5KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES