Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Aug 22;271(1549):1663–1670. doi: 10.1098/rspb.2004.2779

Concordant evolution of plumage colour, feather microstructure and a melanocortin receptor gene between mainland and island populations of a fairy-wren.

S M Doucet 1, M D Shawkey 1, M K Rathburn 1, H L Mays Jr 1, R Montgomerie 1
PMCID: PMC1691780  PMID: 15306285

Abstract

Studies of the patterns of diversification of birds on islands have contributed a great deal to the development of evolutionary theory. In white-winged fairy-wrens, Malurus leucopterus, mainland males develop a striking blue nuptial plumage whereas those on nearby islands develop black nuptial plumage. We explore the proximate basis for this divergence by combining microstructural feather analysis with an investigation of genetic variation at the melanocortin-1 receptor locus (MC1R). Fourier analysis revealed that the medullary keratin matrix (spongy layer) of the feather barbs of blue males was ordered at the appropriate nanoscale to produce the observed blue colour by coherent light scattering. Surprisingly, the feather barbs of black males also contained a spongy layer that could produce a similar blue colour. However, black males had more melanin in their barbs than blue males, and this melanin may effectively mask any structural colour produced by the spongy layer. Moreover, the presence of this spongy layer suggests that black island males evolved from a blue-plumaged ancestor. We also document concordant patterns of variation at the MC1R locus, as five amino acid substitutions were perfectly associated with the divergent blue and black plumage phenotypes. Thus, with the possible involvement of a melanocortin receptor locus, increased melanin density may mask the blue-producing microstructure in black island males, resulting in the divergence of plumage coloration between mainland and island white-winged fairy-wrens. Such mechanisms may also be responsible for plumage colour diversity across broader geographical and evolutionary scales.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Frankham R. Do island populations have less genetic variation than mainland populations? Heredity (Edinb) 1997 Mar;78(Pt 3):311–327. doi: 10.1038/hdy.1997.46. [DOI] [PubMed] [Google Scholar]
  2. Harding R. M., Healy E., Ray A. J., Ellis N. S., Flanagan N., Todd C., Dixon C., Sajantila A., Jackson I. J., Birch-Machin M. A. Evidence for variable selective pressures at MC1R. Am J Hum Genet. 2000 Mar 24;66(4):1351–1361. doi: 10.1086/302863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. MacDougall-Shackleton Elizabeth A., Blanchard Leanne, Igdoura Suleiman A., Gibbs H. Lisle. Unmelanized plumage patterns in Old World leaf warblers do not correspond to sequence variation at the melanocortin-1 receptor locus (MC1R). Mol Biol Evol. 2003 Jul 28;20(10):1675–1681. doi: 10.1093/molbev/msg186. [DOI] [PubMed] [Google Scholar]
  4. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  5. Mundy Nicholas I., Badcock Nichola S., Hart Tom, Scribner Kim, Janssen Kirstin, Nadeau Nicola J. Conserved genetic basis of a quantitative plumage trait involved in mate choice. Science. 2004 Mar 19;303(5665):1870–1873. doi: 10.1126/science.1093834. [DOI] [PubMed] [Google Scholar]
  6. Robbins L. S., Nadeau J. H., Johnson K. R., Kelly M. A., Roselli-Rehfuss L., Baack E., Mountjoy K. G., Cone R. D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell. 1993 Mar 26;72(6):827–834. doi: 10.1016/0092-8674(93)90572-8. [DOI] [PubMed] [Google Scholar]
  7. Shawkey Matthew D., Estes Anne M., Siefferman Lynn M., Hill Geoffrey E. Nanostructure predicts intraspecific variation in ultraviolet-blue plumage colour. Proc Biol Sci. 2003 Jul 22;270(1523):1455–1460. doi: 10.1098/rspb.2003.2390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Takeuchi S., Suzuki H., Yabuuchi M., Takahashi S. A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken. Biochim Biophys Acta. 1996 Aug 14;1308(2):164–168. doi: 10.1016/0167-4781(96)00100-5. [DOI] [PubMed] [Google Scholar]
  9. Takeuchi S., Teshigawara K., Takahashi S. Widespread expression of Agouti-related protein (AGRP) in the chicken: a possible involvement of AGRP in regulating peripheral melanocortin systems in the chicken. Biochim Biophys Acta. 2000 Apr 17;1496(2-3):261–269. doi: 10.1016/s0167-4889(00)00022-7. [DOI] [PubMed] [Google Scholar]
  10. Theron E., Hawkins K., Bermingham E., Ricklefs R. E., Mundy N. I. The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr Biol. 2001 Apr 17;11(8):550–557. doi: 10.1016/s0960-9822(01)00158-0. [DOI] [PubMed] [Google Scholar]
  11. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES