Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Aug 22;271(1549):1757–1763. doi: 10.1098/rspb.2004.2757

Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific.

R Iglesias-Prieto 1, V H Beltrán 1, T C LaJeunesse 1, H Reyes-Bonilla 1, P E Thomé 1
PMCID: PMC1691786  PMID: 15306298

Abstract

Symbiotic reef corals occupy the entire photic zone; however, most species have distinct zonation patterns within the light intensity gradient. It is hypothesized that the presence of specific symbionts adapted to different light regimes may determine the vertical distribution of particular hosts. We have tested this hypothesis by genetic and in situ physiological analyses of the algal populations occupying two dominant eastern Pacific corals, over their vertical distribution in the Gulf of California. Our findings indicate that each coral species hosts a distinct algal taxon adapted to a particular light regime. The differential use of light by specific symbiotic dinoflagellates constitutes an important axis for niche diversification and is sufficient to explain the vertical distribution patterns of these two coral species.

Full Text

The Full Text of this article is available as a PDF (294.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker A. C. Reef corals bleach to survive change. Nature. 2001 Jun 14;411(6839):765–766. doi: 10.1038/35081151. [DOI] [PubMed] [Google Scholar]
  2. Connell J. H. Diversity in tropical rain forests and coral reefs. Science. 1978 Mar 24;199(4335):1302–1310. doi: 10.1126/science.199.4335.1302. [DOI] [PubMed] [Google Scholar]
  3. Hoegh-Guldberg Ove, Jones Ross J., Ward Selina, Loh William K. Communication arising. Is coral bleaching really adaptive? Nature. 2002 Feb 7;415(6872):601–602. doi: 10.1038/415601a. [DOI] [PubMed] [Google Scholar]
  4. Lajeunesse T. C., Trench R. K. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull. 2000 Oct;199(2):126–134. doi: 10.2307/1542872. [DOI] [PubMed] [Google Scholar]
  5. Maxwell D. P., Falk S., Huner NPA. Photosystem II Excitation Pressure and Development of Resistance to Photoinhibition (I. Light-Harvesting Complex II Abundance and Zeaxanthin Content in Chlorella vulgaris). Plant Physiol. 1995 Mar;107(3):687–694. doi: 10.1104/pp.107.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maxwell K., Johnson G. N. Chlorophyll fluorescence--a practical guide. J Exp Bot. 2000 Apr;51(345):659–668. doi: 10.1093/jxb/51.345.659. [DOI] [PubMed] [Google Scholar]
  7. Rowan R., Knowlton N., Baker A., Jara J. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature. 1997 Jul 17;388(6639):265–269. doi: 10.1038/40843. [DOI] [PubMed] [Google Scholar]
  8. Rowan R., Knowlton N. Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2850–2853. doi: 10.1073/pnas.92.7.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rowan R., Powers D. A. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science. 1991 Mar 15;251(4999):1348–1351. doi: 10.1126/science.251.4999.1348. [DOI] [PubMed] [Google Scholar]
  10. Ting C. S., Owens T. G. Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Plant Physiol. 1992 Sep;100(1):367–373. doi: 10.1104/pp.100.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES