Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Aug 22;271(1549):1713–1722. doi: 10.1098/rspb.2004.2772

Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.

H G E Hentschel 1, Tilmann Glimm 1, James A Glazier 1, Stuart A Newman 1
PMCID: PMC1691788  PMID: 15306292

Abstract

We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud.

Full Text

The Full Text of this article is available as a PDF (506.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Canalis Ernesto, Economides Aris N., Gazzerro Elisabetta. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003 Apr;24(2):218–235. doi: 10.1210/er.2002-0023. [DOI] [PubMed] [Google Scholar]
  2. Crampin E. J., Gaffney E. A., Maini P. K. Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model. J Math Biol. 2002 Feb;44(2):107–128. doi: 10.1007/s002850100112. [DOI] [PubMed] [Google Scholar]
  3. Crampin E. J., Hackborn W. W., Maini P. K. Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull Math Biol. 2002 Jul;64(4):747–769. doi: 10.1006/bulm.2002.0295. [DOI] [PubMed] [Google Scholar]
  4. Dillon R., Othmer H. G. A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J Theor Biol. 1999 Apr 7;197(3):295–330. doi: 10.1006/jtbi.1998.0876. [DOI] [PubMed] [Google Scholar]
  5. Downie S. A., Newman S. A. Different roles for fibronectin in the generation of fore and hind limb precartilage condensations. Dev Biol. 1995 Dec;172(2):519–530. doi: 10.1006/dbio.1995.8068. [DOI] [PubMed] [Google Scholar]
  6. Downie S. A., Newman S. A. Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation. Dev Biol. 1994 Mar;162(1):195–208. doi: 10.1006/dbio.1994.1078. [DOI] [PubMed] [Google Scholar]
  7. Fallon J. F., López A., Ros M. A., Savage M. P., Olwin B. B., Simandl B. K. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science. 1994 Apr 1;264(5155):104–107. doi: 10.1126/science.7908145. [DOI] [PubMed] [Google Scholar]
  8. Frenz D. A., Akiyama S. K., Paulsen D. F., Newman S. A. Latex beads as probes of cell surface-extracellular matrix interactions during chondrogenesis: evidence for a role for amino-terminal heparin-binding domain of fibronectin. Dev Biol. 1989 Nov;136(1):87–96. doi: 10.1016/0012-1606(89)90132-2. [DOI] [PubMed] [Google Scholar]
  9. Frenz D. A., Jaikaria N. S., Newman S. A. The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. Dev Biol. 1989 Nov;136(1):97–103. doi: 10.1016/0012-1606(89)90133-4. [DOI] [PubMed] [Google Scholar]
  10. Hall B. K., Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000 Feb;22(2):138–147. doi: 10.1002/(SICI)1521-1878(200002)22:2<138::AID-BIES5>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  11. Izaguirre J. A., Chaturvedi R., Huang C., Cickovski T., Coffland J., Thomas G., Forgacs G., Alber M., Hentschel G., Newman S. A. CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics. 2004 Feb 5;20(7):1129–1137. doi: 10.1093/bioinformatics/bth050. [DOI] [PubMed] [Google Scholar]
  12. Kiskowski Maria A., Alber Mark S., Thomas Gilberto L., Glazier James A., Bronstein Natalie B., Pu Jiayu, Newman Stuart A. Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev Biol. 2004 Jul 15;271(2):372–387. doi: 10.1016/j.ydbio.2004.03.038. [DOI] [PubMed] [Google Scholar]
  13. Kosher R. A., Savage M. P., Chan S. C. In vitro studies on the morphogenesis and differentiation of the mesoderm subjacent to the apical ectodermal ridge of the embryonic chick limb-bud. J Embryol Exp Morphol. 1979 Apr;50:75–97. [PubMed] [Google Scholar]
  14. Leonard C. M., Fuld H. M., Frenz D. A., Downie S. A., Massagué J., Newman S. A. Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol. 1991 May;145(1):99–109. doi: 10.1016/0012-1606(91)90216-p. [DOI] [PubMed] [Google Scholar]
  15. Lewis J. H. Fate maps and the pattern of cell division: a calculation for the chick wing-bud. J Embryol Exp Morphol. 1975 Apr;33(2):419–434. [PubMed] [Google Scholar]
  16. Miura T., Komori M., Shiota K. A novel method for analysis of the periodicity of chondrogenic patterns in limb bud cell culture: correlation of in vitro pattern formation with theoretical models. Anat Embryol (Berl) 2000 May;201(5):419–428. doi: 10.1007/s004290050329. [DOI] [PubMed] [Google Scholar]
  17. Miura T., Shiota K. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat Rec. 2000 Jan 1;258(1):100–107. doi: 10.1002/(SICI)1097-0185(20000101)258:1<100::AID-AR11>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  18. Miura T., Shiota K. TGFbeta2 acts as an "activator" molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev Dyn. 2000 Mar;217(3):241–249. doi: 10.1002/(SICI)1097-0177(200003)217:3<241::AID-DVDY2>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  19. Moftah Marie Z., Downie Sherry A., Bronstein Natalie B., Mezentseva Nadezhda, Pu Jiayu, Maher Pamela A., Newman Stuart A. Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev Biol. 2002 Sep 15;249(2):270–282. doi: 10.1006/dbio.2002.0766. [DOI] [PubMed] [Google Scholar]
  20. Newman S. A., Frisch H. L. Dynamics of skeletal pattern formation in developing chick limb. Science. 1979 Aug 17;205(4407):662–668. doi: 10.1126/science.462174. [DOI] [PubMed] [Google Scholar]
  21. Newman S. A., Frisch H. L., Percus J. K. On the stationary state analysis of reaction-diffusion mechanisms for biological pattern formation. J Theor Biol. 1988 Sep 17;134(2):183–197. doi: 10.1016/s0022-5193(88)80201-7. [DOI] [PubMed] [Google Scholar]
  22. Newman S. A. Sticky fingers: Hox genes and cell adhesion in vertebrate limb development. Bioessays. 1996 Mar;18(3):171–174. doi: 10.1002/bies.950180302. [DOI] [PubMed] [Google Scholar]
  23. Niswander L., Tickle C., Vogel A., Booth I., Martin G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993 Nov 5;75(3):579–587. doi: 10.1016/0092-8674(93)90391-3. [DOI] [PubMed] [Google Scholar]
  24. Oberlender S. A., Tuan R. S. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development. 1994 Jan;120(1):177–187. doi: 10.1242/dev.120.1.177. [DOI] [PubMed] [Google Scholar]
  25. Ornitz David M., Marie Pierre J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002 Jun 15;16(12):1446–1465. doi: 10.1101/gad.990702. [DOI] [PubMed] [Google Scholar]
  26. Oster G. F., Murray J. D., Harris A. K. Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol. 1983 Dec;78:83–125. [PubMed] [Google Scholar]
  27. Peters K. G., Werner S., Chen G., Williams L. T. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development. 1992 Jan;114(1):233–243. doi: 10.1242/dev.114.1.233. [DOI] [PubMed] [Google Scholar]
  28. Sela-Donenfeld Dalit, Kalcheim Chaya. Localized BMP4-noggin interactions generate the dynamic patterning of noggin expression in somites. Dev Biol. 2002 Jun 15;246(2):311–328. doi: 10.1006/dbio.2002.0672. [DOI] [PubMed] [Google Scholar]
  29. Shoji Hiroto, Iwasa Yoh, Kondo Shigeru. Stripes, spots, or reversed spots in two-dimensional Turing systems. J Theor Biol. 2003 Oct 7;224(3):339–350. doi: 10.1016/s0022-5193(03)00170-x. [DOI] [PubMed] [Google Scholar]
  30. Solursh M., Reiter R. S. Inhibitory and stimulatory effects of limb ectoderm on in vitro chondrogenesis. J Exp Zool. 1988 Nov;248(2):147–154. doi: 10.1002/jez.1402480204. [DOI] [PubMed] [Google Scholar]
  31. Solursh M., Singley C. T., Reiter R. S. The influence of epithelia on cartilage and loose connective tissue formation by limb mesenchyme cultures. Dev Biol. 1981 Sep;86(2):471–482. doi: 10.1016/0012-1606(81)90205-0. [DOI] [PubMed] [Google Scholar]
  32. Szebenyi G., Savage M. P., Olwin B. B., Fallon J. F. Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. Dev Dyn. 1995 Dec;204(4):446–456. doi: 10.1002/aja.1002040410. [DOI] [PubMed] [Google Scholar]
  33. Thannickal V. J., Aldweib K. D., Rajan T., Fanburg B. L. Upregulated expression of fibroblast growth factor (FGF) receptors by transforming growth factor-beta1 (TGF-beta1) mediates enhanced mitogenic responses to FGFs in cultured human lung fibroblasts. Biochem Biophys Res Commun. 1998 Oct 20;251(2):437–441. doi: 10.1006/bbrc.1998.9443. [DOI] [PubMed] [Google Scholar]
  34. Tickle C. Patterning systems--from one end of the limb to the other. Dev Cell. 2003 Apr;4(4):449–458. doi: 10.1016/s1534-5807(03)00095-9. [DOI] [PubMed] [Google Scholar]
  35. Tomasek J. J., Mazurkiewicz J. E., Newman S. A. Nonuniform distribution of fibronectin during avian limb development. Dev Biol. 1982 Mar;90(1):118–126. doi: 10.1016/0012-1606(82)90217-2. [DOI] [PubMed] [Google Scholar]
  36. Tsonis P. A., Del Rio-Tsonis K., Millan J. L., Wheelock M. J. Expression of N-cadherin and alkaline phosphatase in chick limb bud mesenchymal cells: regulation by 1,25-dihydroxyvitamin D3 or TGF-beta 1. Exp Cell Res. 1994 Aug;213(2):433–437. doi: 10.1006/excr.1994.1220. [DOI] [PubMed] [Google Scholar]
  37. Van Obberghen-Schilling E., Roche N. S., Flanders K. C., Sporn M. B., Roberts A. B. Transforming growth factor beta 1 positively regulates its own expression in normal and transformed cells. J Biol Chem. 1988 Jun 5;263(16):7741–7746. [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15306292s01.pdf (211.5KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES