Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Sep 7;271(1550):1791–1798. doi: 10.1098/rspb.2004.2792

Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ant symbiosis.

Nicole M Gerardo 1, Ulrich G Mueller 1, Shauna L Price 1, Cameron R Currie 1
PMCID: PMC1691791  PMID: 15315894

Abstract

Fungus-growing ants, their cultivated fungi and the cultivar-attacking parasite Escovopsis coevolve as a complex community. Higher-level phylogenetic congruence of the symbionts suggests specialized long-term associations of host-parasite clades but reveals little about parasite specificity at finer scales of species-species and genotype-genotype interactions. By coupling sequence and amplified fragment length polymorphism genotyping analyses with experimental evidence, we examine (i) the host specificity of Escovopsis strains infecting colonies of three closely related ant species in the genus Cyphomyrmex, and (ii) potential mechanisms constraining the Escovopsis host range. Incongruence of cultivar and ant relationships across the three focal Cyphomyrmex spp. allows us to test whether Escovopsis strains track their cultivar or the ant hosts. Phylogenetic analyses demonstrate that the Escovopsis phylogeny matches the cultivar phylogeny but not the ant phylogeny, indicating that the parasites are cultivar specific. Cross-infection experiments establish that ant gardens can be infected by parasite strains with which they are not typically associated in the field, but that infection is more likely when gardens are inoculated with their typical parasite strains. Thus, Escovopsis specialization is shaped by the parasite's ability to overcome only a narrow range of garden-specific defences, but specialization is probably additionally constrained by ecological factors, including the other symbionts (i.e. ants and their antibiotic-producing bacteria) within the coevolved fungus-growing ant symbiosis.

Full Text

The Full Text of this article is available as a PDF (263.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender W., Spierer P., Hogness D. S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983 Jul 25;168(1):17–33. doi: 10.1016/s0022-2836(83)80320-9. [DOI] [PubMed] [Google Scholar]
  2. Carius H. J., Little T. J., Ebert D. Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution. 2001 Jun;55(6):1136–1145. doi: 10.1111/j.0014-3820.2001.tb00633.x. [DOI] [PubMed] [Google Scholar]
  3. Clayton Dale H., Johnson Kevin P. Linking coevolutionary history to ecological process: doves and lice. Evolution. 2003 Oct;57(10):2335–2341. doi: 10.1111/j.0014-3820.2003.tb00245.x. [DOI] [PubMed] [Google Scholar]
  4. Currie C. R. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol. 2001;55:357–380. doi: 10.1146/annurev.micro.55.1.357. [DOI] [PubMed] [Google Scholar]
  5. Currie C. R., Mueller U. G., Malloch D. The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7998–8002. doi: 10.1073/pnas.96.14.7998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Currie C. R., Stuart A. E. Weeding and grooming of pathogens in agriculture by ants. Proc Biol Sci. 2001 May 22;268(1471):1033–1039. doi: 10.1098/rspb.2001.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Currie Cameron R., Wong Bess, Stuart Alison E., Schultz Ted R., Rehner Stephen A., Mueller Ulrich G., Sung Gi-Ho, Spatafora Joseph W., Straus Neil A. Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science. 2003 Jan 17;299(5605):386–388. doi: 10.1126/science.1078155. [DOI] [PubMed] [Google Scholar]
  8. Green A. M., Mueller U. G., Adams R. M. M. Extensive exchange of fungal cultivars between sympatric species of fungus-growing ants. Mol Ecol. 2002 Feb;11(2):191–195. doi: 10.1046/j.1365-294x.2002.01433.x. [DOI] [PubMed] [Google Scholar]
  9. Hafner M. S., Sudman P. D., Villablanca F. X., Spradling T. A., Demastes J. W., Nadler S. A. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science. 1994 Aug 19;265(5175):1087–1090. doi: 10.1126/science.8066445. [DOI] [PubMed] [Google Scholar]
  10. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  11. Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
  12. Johnson Kevin P., Williams Barry L., Drown Devin M., Adams Richard J., Clayton Dale H. The population genetics of host specificity: genetic differentiation in dove lice (Insecta: Phthiraptera). Mol Ecol. 2002 Jan;11(1):25–38. doi: 10.1046/j.0962-1083.2001.01412.x. [DOI] [PubMed] [Google Scholar]
  13. May R. M., Nowak M. A. Coinfection and the evolution of parasite virulence. Proc Biol Sci. 1995 Aug 22;261(1361):209–215. doi: 10.1098/rspb.1995.0138. [DOI] [PubMed] [Google Scholar]
  14. Morand Serge, Simková Andrea, Matejusová Iveta, Plaisance Laetitia, Verneau Olivier, Desdevises Yves. Investigating patterns may reveal processes: evolutionary ecology of ectoparasitic monogeneans. Int J Parasitol. 2002 Feb;32(2):111–119. doi: 10.1016/s0020-7519(01)00347-2. [DOI] [PubMed] [Google Scholar]
  15. Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants . Science. 1998 Sep 25;281(5385):2034–2038. doi: 10.1126/science.281.5385.2034. [DOI] [PubMed] [Google Scholar]
  16. Mueller UG, Wolfenbarger LL. AFLP genotyping and fingerprinting. Trends Ecol Evol. 1999 Oct;14(10):389–394. doi: 10.1016/s0169-5347(99)01659-6. [DOI] [PubMed] [Google Scholar]
  17. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  18. Read A. F., Taylor L. H. The ecology of genetically diverse infections. Science. 2001 May 11;292(5519):1099–1102. doi: 10.1126/science.1059410. [DOI] [PubMed] [Google Scholar]
  19. Sorenson Michael D., Balakrishnan Christopher N., Payne Robert B. Clade-limited colonization in brood parasitic finches (Vidua spp.). Syst Biol. 2004 Feb;53(1):140–153. doi: 10.1080/10635150490265021. [DOI] [PubMed] [Google Scholar]
  20. Sorenson Michael D., Sefc Kristina M., Payne Robert B. Speciation by host switch in brood parasitic indigobirds. Nature. 2003 Aug 21;424(6951):928–931. doi: 10.1038/nature01863. [DOI] [PubMed] [Google Scholar]
  21. Van den Ackerveken G., Bonas U. Bacterial avirulence proteins as triggers of plant disease resistance. Trends Microbiol. 1997 Oct;5(10):394–398. doi: 10.1016/S0966-842X(97)01124-4. [DOI] [PubMed] [Google Scholar]
  22. Waldenström J., Bensch S., Kiboi S., Hasselquist D., Ottosson U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol. 2002 Aug;11(8):1545–1554. doi: 10.1046/j.1365-294x.2002.01523.x. [DOI] [PubMed] [Google Scholar]
  23. Woolhouse M. E., Taylor L. H., Haydon D. T. Population biology of multihost pathogens. Science. 2001 May 11;292(5519):1109–1112. doi: 10.1126/science.1059026. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES