Abstract
The phylogenetic associations among 13 currently recognized African leaf chameleon species were investigated by making use of mitochondrial and nuclear DNA sequence data (44 taxa and 4145 characters). The gene tree indicates two divergent clades within Rhampholeon; this finding is congruent with previous morphological suggestions. The first clade (I) comprises three taxa (R. kerstenii, R. brevicaudatus and R. brachyurus) and is widely distributed in lowland forest and or non-forest biomes. The second clade (II) comprises the remaining Rhampholeon species and can be subdivided into three subclades. By contrast, most taxa belonging to clade II are confined to relict montane forest biotopes. Based on geographical, morphological and molecular evidence, it is suggested that the taxonomy of Rhampholeon be revised to include two genera (Rieppeleon and Rhampholeon) and three subgenera (Rhampholeon, Bicuspis and Rhinodigitum). There is a close correlation between geographical distribution and phylogenetic relatedness among Rhampholeon taxa, indicating that vicariance and climate change were possibly the most influential factors driving speciation in the group. A relaxed Bayesian clock suggests that speciation times coincided both with the northern movement of Africa, which caused the constriction of the pan African forest, and to rifting in east Africa ca. 20 Myr ago. Subsequent speciation among taxa was probably the result of gradual desiccation of forests between 20 and 5 Myr ago.
Full Text
The Full Text of this article is available as a PDF (234.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arctander P., Johansen C., Coutellec-Vreto M. A. Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol Biol Evol. 1999 Dec;16(12):1724–1739. doi: 10.1093/oxfordjournals.molbev.a026085. [DOI] [PubMed] [Google Scholar]
- Baker R. H., DeSalle R. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst Biol. 1997 Dec;46(4):654–673. doi: 10.1093/sysbio/46.4.654. [DOI] [PubMed] [Google Scholar]
- Carlson L. M., Oettinger M. A., Schatz D. G., Masteller E. L., Hurley E. A., McCormack W. T., Baltimore D., Thompson C. B. Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell. 1991 Jan 11;64(1):201–208. doi: 10.1016/0092-8674(91)90221-j. [DOI] [PubMed] [Google Scholar]
- Frippiat C., Kremarik P., Ropars A., Dournon C., Frippiat J. P. The recombination-activating gene 1 of Pleurodeles waltl (urodele amphibian) is transcribed in lymphoid tissues and in the central nervous system. Immunogenetics. 2001;52(3-4):264–275. doi: 10.1007/s002510000275. [DOI] [PubMed] [Google Scholar]
- Girman D. J., Kat P. W., Mills M. G., Ginsberg J. R., Borner M., Wilson V., Fanshawe J. H., Fitzgibbon C., Lau L. M., Wayne R. K. Molecular genetic and morphological analyses of the African wild dog (Lycaon pictus). J Hered. 1993 Nov-Dec;84(6):450–459. doi: 10.1093/oxfordjournals.jhered.a111371. [DOI] [PubMed] [Google Scholar]
- Groth J. G., Barrowclough G. F. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol. 1999 Jul;12(2):115–123. doi: 10.1006/mpev.1998.0603. [DOI] [PubMed] [Google Scholar]
- Kishino H., Thorne J. L., Bruno W. J. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol. 2001 Mar;18(3):352–361. doi: 10.1093/oxfordjournals.molbev.a003811. [DOI] [PubMed] [Google Scholar]
- Macey J. R., Larson A., Ananjeva N. B., Fang Z., Papenfuss T. J. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol. 1997 Jan;14(1):91–104. doi: 10.1093/oxfordjournals.molbev.a025706. [DOI] [PubMed] [Google Scholar]
- Macey J. R., Larson A., Ananjeva N. B., Papenfuss T. J. Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. J Mol Evol. 1997 Jun;44(6):660–674. doi: 10.1007/pl00006190. [DOI] [PubMed] [Google Scholar]
- Macey J. R., Schulte J. A., 2nd, Larson A., Ananjeva N. B., Wang Y., Pethiyagoda R., Rastegar-Pouyani N., Papenfuss T. J. Evaluating trans-tethys migration: an example using acrodont lizard phylogenetics. Syst Biol. 2000 Jun;49(2):233–256. doi: 10.1093/sysbio/49.2.233. [DOI] [PubMed] [Google Scholar]
- Matthee Conrad A., van Vuuren Bettine Jansen, Bell Diana, Robinson Terence J. A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol. 2004 Jun;53(3):433–447. doi: 10.1080/10635150490445715. [DOI] [PubMed] [Google Scholar]
- Pitra Christian, Hansen Anders J., Lieckfeldt Dietmar, Arctander Peter. An exceptional case of historical outbreeding in African sable antelope populations. Mol Ecol. 2002 Jul;11(7):1197–1208. doi: 10.1046/j.1365-294x.2002.01516.x. [DOI] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Raxworthy C. J., Forstner M. R. J., Nussbaum R. A. Chameleon radiation by oceanic dispersal. Nature. 2002 Feb 14;415(6873):784–787. doi: 10.1038/415784a. [DOI] [PubMed] [Google Scholar]
- Ronquist Fredrik, Huelsenbeck John P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003 Aug 12;19(12):1572–1574. doi: 10.1093/bioinformatics/btg180. [DOI] [PubMed] [Google Scholar]
- Thorne J. L., Kishino H., Painter I. S. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol. 1998 Dec;15(12):1647–1657. doi: 10.1093/oxfordjournals.molbev.a025892. [DOI] [PubMed] [Google Scholar]
- Thorne Jeffrey L., Kishino Hirohisa. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol. 2002 Oct;51(5):689–702. doi: 10.1080/10635150290102456. [DOI] [PubMed] [Google Scholar]
- Tolley Krystal A., Tilbury Colin R., Branch William R., Matthee Conrad A. Phylogenetics of the southern African dwarf chameleons, Bradypodion (Squamata: Chamaeleonidae). Mol Phylogenet Evol. 2004 Feb;30(2):354–365. doi: 10.1016/s1055-7903(03)00211-2. [DOI] [PubMed] [Google Scholar]
- Townsend Ted, Larson Allan. Molecular phylogenetics and mitochondrial genomic evolution in the chamaeleonidae (Reptilia, Squamata). Mol Phylogenet Evol. 2002 Apr;23(1):22–36. doi: 10.1006/mpev.2001.1076. [DOI] [PubMed] [Google Scholar]
- Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
- Zachos J., Pagani M., Sloan L., Thomas E., Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001 Apr 27;292(5517):686–693. doi: 10.1126/science.1059412. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.