Abstract
Maternal effects, in which differences in parental state cause differences in offspring fitness, are important in trade-offs influencing an individual's optimal reproductive strategy. In zebra finches (Taeniopygia guttata) we manipulated the nutritional state for four weeks before the start of breeding through protein supplementation. Zebra finches were kept on identical diets during the rest of the experiment. We then tested the effects of maternal state on offspring size, survival and fecundity. In order to separate the effects of maternal state occurring through egg production, incubation and chick-rearing, we used a cross-fostering experiment. We show that a protein-rich diet prior to laying improved maternal body weight prior to breeding compared with birds on a protein-poor diet. Poorer maternal state prior to breeding gave rise to offspring with lower fecundity than offspring from birds in a better nutritional state. Maternal state is thought to affect the conditions developing offspring experience through the bird's ability to produce and incubate eggs. Male and female embryos differed in their responses to conditions at different developmental stages. This shows that embryonic developmental conditions and sex differences in vulnerability to these conditions need to be incorporated into future models of selection, life-history evolution and sex-ratio theory.
Full Text
The Full Text of this article is available as a PDF (133.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blount Jonathan D., Metcalfe Neil B., Birkhead Tim R., Surai Peter F. Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science. 2003 Apr 4;300(5616):125–127. doi: 10.1126/science.1082142. [DOI] [PubMed] [Google Scholar]
- Blount Jonathan D., Surai Peter F., Nager Ruedi G., Houston David C., Møller Anders Pape, Trewby Michael L., Kennedy Malcolm W. Carotenoids and egg quality in the lesser blackbacked gull Larus fuscus: a supplemental feeding study of maternal effects. Proc Biol Sci. 2002 Jan 7;269(1486):29–36. doi: 10.1098/rspb.2001.1840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies Michael J., Norman Robert J. Programming and reproductive functioning. Trends Endocrinol Metab. 2002 Nov;13(9):386–392. doi: 10.1016/s1043-2760(02)00691-4. [DOI] [PubMed] [Google Scholar]
- Desai M., Hales C. N. Role of fetal and infant growth in programming metabolism in later life. Biol Rev Camb Philos Soc. 1997 May;72(2):329–348. doi: 10.1017/s0006323196005026. [DOI] [PubMed] [Google Scholar]
- Gasparini J., McCoy K. D., Haussy C., Tveraa T., Boulinier T. Induced maternal response to the Lyme disease spirochaete Borrelia burgdorferi sensu lato in a colonial seabird, the kittiwake Rissa tridactyla. Proc Biol Sci. 2001 Mar 22;268(1467):647–650. doi: 10.1098/rspb.2000.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths R., Double M. C., Orr K., Dawson R. J. A DNA test to sex most birds. Mol Ecol. 1998 Aug;7(8):1071–1075. doi: 10.1046/j.1365-294x.1998.00389.x. [DOI] [PubMed] [Google Scholar]
- Harding J. E. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001 Feb;30(1):15–23. doi: 10.1093/ije/30.1.15. [DOI] [PubMed] [Google Scholar]
- Haywood S., Perrins C. M. Is clutch size in birds affected by environmental conditions during growth? Proc Biol Sci. 1992 Aug 22;249(1325):195–197. doi: 10.1098/rspb.1992.0103. [DOI] [PubMed] [Google Scholar]
- Lindström J. Early development and fitness in birds and mammals. Trends Ecol Evol. 1999 Sep;14(9):343–348. doi: 10.1016/s0169-5347(99)01639-0. [DOI] [PubMed] [Google Scholar]
- Metcalfe N. B., Monaghan P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001 May 1;16(5):254–260. doi: 10.1016/s0169-5347(01)02124-3. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1999.0649. [DOI] [PMC free article] [Google Scholar]
- Rhind S. M., Rae M. T., Brooks A. N. Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction. 2001 Aug;122(2):205–214. doi: 10.1530/rep.0.1220205. [DOI] [PubMed] [Google Scholar]
- Scheuber Hannes, Jacot Alain, Brinkhof Martin W. G. The effect of past condition on a multicomponent sexual signal. Proc Biol Sci. 2003 Sep 7;270(1526):1779–1784. doi: 10.1098/rspb.2003.2449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser M. E., Lessells C. M. The costs of egg production and incubation in great tits (Parus major). Proc Biol Sci. 2001 Jun 22;268(1473):1271–1277. doi: 10.1098/rspb.2001.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterland R. A., Garza C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr. 1999 Feb;69(2):179–197. doi: 10.1093/ajcn/69.2.179. [DOI] [PubMed] [Google Scholar]
- Williams T. D. Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol Rev Camb Philos Soc. 1994 Feb;69(1):35–59. doi: 10.1111/j.1469-185x.1994.tb01485.x. [DOI] [PubMed] [Google Scholar]
