Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Oct 22;271(1553):2171–2178. doi: 10.1098/rspb.2004.2817

Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips.

Egbert J de Vries 1, Gerrit Jacobs 1, Maurice W Sabelis 1, Steph B J Menken 1, Johannes A J Breeuwer 1
PMCID: PMC1691834  PMID: 15475338

Abstract

Studies on bacteria in the gut of insect species are numerous, but their focus is hardly ever on the impact on host performance. We showed earlier that Erwinia bacteria occur in the gut of western flower thrips, most probably acquired during feeding. Here, we investigate whether thrips gain a net benefit or pay a net cost because of these gut bacteria. On a diet of cucumber leaves, the time to maturity is shorter and the oviposition rate is higher in thrips with bacteria than in thrips without (aposymbionts). When fed on cucumber leaves and pollen, aposymbionts develop faster and lay more eggs. So Erwinia bacteria benefit or parasitize their thrips hosts depending on the diet, which is in accordance with theoretical predictions for fitness of organisms engaged in symbiotic interactions. Possibly, the transmission of gut bacteria has not become strictly vertical because of this diet-dependent fitness variability.

Full Text

The Full Text of this article is available as a PDF (169.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann P., Baumann L., Lai C. Y., Rouhbakhsh D., Moran N. A., Clark M. A. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol. 1995;49:55–94. doi: 10.1146/annurev.mi.49.100195.000415. [DOI] [PubMed] [Google Scholar]
  2. Breeuwer J. A., Werren J. H. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics. 1993 Oct;135(2):565–574. doi: 10.1093/genetics/135.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breznak J. A. Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol. 1982;36:323–343. doi: 10.1146/annurev.mi.36.100182.001543. [DOI] [PubMed] [Google Scholar]
  4. Chang K. P. Effects of elevated temperature on the mycetome and symbiotes of the bed bug Cimex lectularius (Heteroptera). J Invertebr Pathol. 1974 May;23(3):333–340. doi: 10.1016/0022-2011(74)90098-6. [DOI] [PubMed] [Google Scholar]
  5. Cruden D. L., Markovetz A. J. Microbial ecology of the cockroach gut. Annu Rev Microbiol. 1987;41:617–643. doi: 10.1146/annurev.mi.41.100187.003153. [DOI] [PubMed] [Google Scholar]
  6. Dillon R. J., Vennard C. T., Charnley A. K. Exploitation of gut bacteria in the locust. Nature. 2000 Feb 24;403(6772):851–851. doi: 10.1038/35002669. [DOI] [PubMed] [Google Scholar]
  7. Douglas A. E. Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 1989 Nov;64(4):409–434. doi: 10.1111/j.1469-185x.1989.tb00682.x. [DOI] [PubMed] [Google Scholar]
  8. Genkai-Kato M., Yamamura N. Evolution of mutualistic symbiosis without vertical transmission. Theor Popul Biol. 1999 Jun;55(3):309–323. doi: 10.1006/tpbi.1998.1407. [DOI] [PubMed] [Google Scholar]
  9. Herre EA, Knowlton N, Mueller UG, Rehner SA. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol. 1999 Feb;14(2):49–53. doi: 10.1016/s0169-5347(98)01529-8. [DOI] [PubMed] [Google Scholar]
  10. doi: 10.1098/rspb.1998.0426. [DOI] [PMC free article] [Google Scholar]
  11. Potrikus C. J., Breznak J. A. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol. 1977 Feb;33(2):392–399. doi: 10.1128/aem.33.2.392-399.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sherratt Thomas N., Roberts Gilbert. The stability of cooperation involving variable investment. J Theor Biol. 2002 Mar 7;215(1):47–56. doi: 10.1006/jtbi.2001.2495. [DOI] [PubMed] [Google Scholar]
  13. Thibout E., Guillot J. F., Ferary S., Limouzin P., Auger J. Origin and identification of bacteria which produce kairomones in the frass of Acrolepiopsis assectella (Lep., Hyponomeutoidea). Experientia. 1995 Nov 15;51(11):1073–1075. doi: 10.1007/BF01946919. [DOI] [PubMed] [Google Scholar]
  14. Ulrich R. G., Buthala D. A., Klug M. J. Microbiota Associated with the Gastrointestinal Tract of the Common House Cricket, Acheta domestica. Appl Environ Microbiol. 1981 Jan;41(1):246–254. doi: 10.1128/aem.41.1.246-254.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. de Vries E. J., Breeuwer J. A., Jacobs G., Mollema C. The association of Western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: transient or permanent? J Invertebr Pathol. 2001 Feb;77(2):120–128. doi: 10.1006/jipa.2001.5009. [DOI] [PubMed] [Google Scholar]
  16. de Vries E. J., Jacobs G., Breeuwer J. A. Growth and transmission of gut bacteria in the Western flower thrips, Frankliniella occidentalis. J Invertebr Pathol. 2001 Feb;77(2):129–137. doi: 10.1006/jipa.2001.5010. [DOI] [PubMed] [Google Scholar]
  17. van Opijnen T., Breeuwer J. A. High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Exp Appl Acarol. 1999 Nov;23(11):871–881. doi: 10.1023/a:1006363604916. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES