Abstract
The latitudinal gradient in species richness is a pervasive feature of the living world, but its underlying causes remain unclear. We evaluated the hypothesis that environmental energy drives evolutionary rates and thereby diversification in flowering plants. We estimated energy levels across angiosperm family distributions in terms of evapotranspiration, temperature and UV radiation taken from satellite and climate databases. Using the most comprehensive DNA-based phylogenetic tree for angiosperms to date, analysis of 86 sister-family comparisons shows that molecular evolutionary rates have indeed been faster in high-energy regions, but that this is not an intermediate step between energy and diversity. Energy has strong, but independent effects on both species richness and molecular evolutionary rates.
Full Text
The Full Text of this article is available as a PDF (117.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen Andrew P., Brown James H., Gillooly James F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science. 2002 Aug 30;297(5586):1545–1548. doi: 10.1126/science.1072380. [DOI] [PubMed] [Google Scholar]
- Barraclough T. G., Nee S. Phylogenetics and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):391–399. doi: 10.1016/s0169-5347(01)02161-9. [DOI] [PubMed] [Google Scholar]
- Barraclough T. G., Savolainen V. Evolutionary rates and species diversity in flowering plants. Evolution. 2001 Apr;55(4):677–683. doi: 10.1554/0014-3820(2001)055[0677:erasdi]2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Bromham L., Cardillo M. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J Evol Biol. 2003 Mar;16(2):200–207. doi: 10.1046/j.1420-9101.2003.00526.x. [DOI] [PubMed] [Google Scholar]
- Davies T. Jonathan, Barraclough Timothy G., Chase Mark W., Soltis Pamela S., Soltis Douglas E., Savolainen Vincent. Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proc Natl Acad Sci U S A. 2004 Feb 6;101(7):1904–1909. doi: 10.1073/pnas.0308127100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitch W. M., Beintema J. J. Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol. 1990 Sep;7(5):438–443. doi: 10.1093/oxfordjournals.molbev.a040617. [DOI] [PubMed] [Google Scholar]
- Francis Anthony P., Currie David J. A globally consistent richness-climate relationship for angiosperms. Am Nat. 2003 Mar 7;161(4):523–536. doi: 10.1086/368223. [DOI] [PubMed] [Google Scholar]
- Isaac Nick J. B., Agapow Paul-Michael, Harvey Paul H., Purvis Andy. Phylogenetically nested comparisons for testing correlates of species richness: a simulation study of continuous variables. Evolution. 2003 Jan;57(1):18–26. doi: 10.1111/j.0014-3820.2003.tb00212.x. [DOI] [PubMed] [Google Scholar]
- Johnson Jerald B., Omland Kristian S. Model selection in ecology and evolution. Trends Ecol Evol. 2004 Feb;19(2):101–108. doi: 10.1016/j.tree.2003.10.013. [DOI] [PubMed] [Google Scholar]
- Losos J. B., Schluter D. Analysis of an evolutionary species-area relationship. Nature. 2000 Dec 14;408(6814):847–850. doi: 10.1038/35048558. [DOI] [PubMed] [Google Scholar]
- Macpherson E. Large-scale species-richness gradients in the Atlantic Ocean. Proc Biol Sci. 2002 Aug 22;269(1501):1715–1720. doi: 10.1098/rspb.2002.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1998.0337. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1999.0726. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1999.0766. [DOI] [PMC free article] [Google Scholar]
- Pawlowski J., Bolivar I., Fahrni J. F., de Vargas C., Gouy M., Zaninetti L. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol. 1997 May;14(5):498–505. doi: 10.1093/oxfordjournals.molbev.a025786. [DOI] [PubMed] [Google Scholar]
- Peterson AT, Sober n J, Sanchez-Cordero V., V Conservatism of ecological niches in evolutionary time . Science. 1999 Aug 20;285(5431):1265–1267. doi: 10.1126/science.285.5431.1265. [DOI] [PubMed] [Google Scholar]
- Ricklefs Robert E. Global diversification rates of passerine birds. Proc Biol Sci. 2003 Nov 7;270(1530):2285–2291. doi: 10.1098/rspb.2003.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roy K., Jablonski D., Valentine J. W., Rosenberg G. Marine latitudinal diversity gradients: tests of causal hypotheses. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3699–3702. doi: 10.1073/pnas.95.7.3699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims Hallie J., McConway Kevin J. Nonstochastic variation of species-level diversification rates within angiosperms. Evolution. 2003 Mar;57(3):460–479. doi: 10.1111/j.0014-3820.2003.tb01538.x. [DOI] [PubMed] [Google Scholar]
- Soltis P. S., Soltis D. E., Chase M. W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 1999 Nov 25;402(6760):402–404. doi: 10.1038/46528. [DOI] [PubMed] [Google Scholar]
- Webster Andrea J., Payne Robert J. H., Pagel Mark. Molecular phylogenies link rates of evolution and speciation. Science. 2003 Jul 25;301(5632):478–478. doi: 10.1126/science.1083202. [DOI] [PubMed] [Google Scholar]
- Wikström N., Savolainen V., Chase M. W. Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci. 2001 Nov 7;268(1482):2211–2220. doi: 10.1098/rspb.2001.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Queiroz Alan. Contingent predictability in evolution: key traits and diversification. Syst Biol. 2002 Dec;51(6):917–929. [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.