Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Nov 7;271(1554):2201–2207. doi: 10.1098/rspb.2004.2848

Adaptive evolution of HoxA-11 and HoxA-13 at the origin of the uterus in mammals.

Vincent J Lynch 1, Jutta J Roth 1, Kazuhiko Takahashi 1, Casey W Dunn 1, Daisuke F Nonaka 1, Geffrey F Stopper 1, Günter P Wagner 1
PMCID: PMC1691855  PMID: 15539344

Abstract

The evolution of morphological characters is mediated by the evolution of developmental genes. Evolutionary changes can either affect cis-regulatory elements, leading to differences in their temporal and spatial regulation, or affect the coding region. Although there is ample evidence for the importance of cis-regulatory evolution, it has only recently been shown that transcription factors do not remain functionally equivalent during evolution. These results suggest that the evolution of transcription factors may play an active role in the evolution of development. To test this idea we investigated the molecular evolution of two genes essential for the development and function of the mammalian female reproductive organs, HoxA-11 and HoxA-13. We predicted that if coding-region evolution plays an active role in developmental evolution, then these genes should have experienced adaptive evolution at the origin of the mammalian female reproductive system. We report the sequences of HoxA-11 from basal mammalian and amniote taxa and analyse HoxA-11 and HoxA-13 for signatures of adaptive molecular evolution. The data demonstrate that these genes were under strong positive (directional) selection in the stem lineage of therian and eutherian mammals, coincident with the evolution of the uterus and vagina. These results support the idea that adaptive evolution of transcription factors can be an integral part in the evolution of novel structures.

Full Text

The Full Text of this article is available as a PDF (200.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrier M., Robichaux R. H., Purugganan M. D. Accelerated regulatory gene evolution in an adaptive radiation. Proc Natl Acad Sci U S A. 2001 Aug 21;98(18):10208–10213. doi: 10.1073/pnas.181257698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bielawski Joseph P., Yang Ziheng. Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genomics. 2003;3(1-4):201–212. [PubMed] [Google Scholar]
  3. Fares Mario Ali, Bezemer Daniela, Moya Andrés, Marín Ignacio. Selection on coding regions determined Hox7 genes evolution. Mol Biol Evol. 2003 Aug 29;20(12):2104–2112. doi: 10.1093/molbev/msg222. [DOI] [PubMed] [Google Scholar]
  4. Galant Ron, Carroll Sean B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature. 2002 Feb 6;415(6874):910–913. doi: 10.1038/nature717. [DOI] [PubMed] [Google Scholar]
  5. Goldman N., Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–736. doi: 10.1093/oxfordjournals.molbev.a040153. [DOI] [PubMed] [Google Scholar]
  6. Grenier J. K., Carroll S. B. Functional evolution of the Ultrabithorax protein. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):704–709. doi: 10.1073/pnas.97.2.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haack H., Gruss P. The establishment of murine Hox-1 expression domains during patterning of the limb. Dev Biol. 1993 Jun;157(2):410–422. doi: 10.1006/dbio.1993.1145. [DOI] [PubMed] [Google Scholar]
  8. Holland P. Homeobox genes in vertebrate evolution. Bioessays. 1992 Apr;14(4):267–273. doi: 10.1002/bies.950140412. [DOI] [PubMed] [Google Scholar]
  9. Hsieh-Li H. M., Witte D. P., Weinstein M., Branford W., Li H., Small K., Potter S. S. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development. 1995 May;121(5):1373–1385. doi: 10.1242/dev.121.5.1373. [DOI] [PubMed] [Google Scholar]
  10. Kappen C., Schughart K., Ruddle F. H. Two steps in the evolution of Antennapedia-class vertebrate homeobox genes. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5459–5463. doi: 10.1073/pnas.86.14.5459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kessel M., Gruss P. Murine developmental control genes. Science. 1990 Jul 27;249(4967):374–379. doi: 10.1126/science.1974085. [DOI] [PubMed] [Google Scholar]
  12. Killian J. K., Buckley T. R., Stewart N., Munday B. L., Jirtle R. L. Marsupials and Eutherians reunited: genetic evidence for the Theria hypothesis of mammalian evolution. Mamm Genome. 2001 Jul;12(7):513–517. doi: 10.1007/s003350020026. [DOI] [PubMed] [Google Scholar]
  13. Kobayashi Akio, Behringer Richard R. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003 Dec;4(12):969–980. doi: 10.1038/nrg1225. [DOI] [PubMed] [Google Scholar]
  14. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  15. Li W. H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993 Jan;36(1):96–99. doi: 10.1007/BF02407308. [DOI] [PubMed] [Google Scholar]
  16. Martinez-Castilla León Patricio, Alvarez-Buylla Elena R. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci U S A. 2003 Nov 3;100(23):13407–13412. doi: 10.1073/pnas.1835864100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mathews Sarah, Burleigh J. Gordon, Donoghue Michael J. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms. Mol Biol Evol. 2003 May 30;20(7):1087–1097. doi: 10.1093/molbev/msg123. [DOI] [PubMed] [Google Scholar]
  18. McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
  19. Messier W., Stewart C. B. Episodic adaptive evolution of primate lysozymes. Nature. 1997 Jan 9;385(6612):151–154. doi: 10.1038/385151a0. [DOI] [PubMed] [Google Scholar]
  20. Mortlock D. P., Sateesh P., Innis J. W. Evolution of N-terminal sequences of the vertebrate HOXA13 protein. Mamm Genome. 2000 Feb;11(2):151–158. doi: 10.1007/s003350010029. [DOI] [PubMed] [Google Scholar]
  21. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  22. Phillips Matthew J., Penny David. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol. 2003 Aug;28(2):171–185. doi: 10.1016/s1055-7903(03)00057-5. [DOI] [PubMed] [Google Scholar]
  23. Ranganayakulu G., Elliott D. A., Harvey R. P., Olson E. N. Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development. 1998 Aug;125(16):3037–3048. doi: 10.1242/dev.125.16.3037. [DOI] [PubMed] [Google Scholar]
  24. Rodríguez-Trelles Francisco, Tarrío Rosa, Ayala Francisco J. Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc Natl Acad Sci U S A. 2003 Oct 23;100(23):13413–13417. doi: 10.1073/pnas.1835646100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ronshaugen Matthew, McGinnis Nadine, McGinnis William. Hox protein mutation and macroevolution of the insect body plan. Nature. 2002 Feb 6;415(6874):914–917. doi: 10.1038/nature716. [DOI] [PubMed] [Google Scholar]
  26. Ruddle F. H., Bartels J. L., Bentley K. L., Kappen C., Murtha M. T., Pendleton J. W. Evolution of Hox genes. Annu Rev Genet. 1994;28:423–442. doi: 10.1146/annurev.ge.28.120194.002231. [DOI] [PubMed] [Google Scholar]
  27. Satokata I., Benson G., Maas R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature. 1995 Mar 30;374(6521):460–463. doi: 10.1038/374460a0. [DOI] [PubMed] [Google Scholar]
  28. Shashikant C. S., Utset M. F., Violette S. M., Wise T. L., Einat P., Einat M., Pendleton J. W., Schughart K., Ruddle F. H. Homeobox genes in mouse development. Crit Rev Eukaryot Gene Expr. 1991;1(3):207–245. [PubMed] [Google Scholar]
  29. Stadler H. S., Higgins K. M., Capecchi M. R. Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs. Development. 2001 Nov;128(21):4177–4188. doi: 10.1242/dev.128.21.4177. [DOI] [PubMed] [Google Scholar]
  30. Suzuki Yoshiyuki, Nei Masatoshi. False-positive selection identified by ML-based methods: examples from the Sig1 gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol Biol Evol. 2004 Mar 10;21(5):914–921. doi: 10.1093/molbev/msh098. [DOI] [PubMed] [Google Scholar]
  31. Taylor H. S., Vanden Heuvel G. B., Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997 Dec;57(6):1338–1345. doi: 10.1095/biolreprod57.6.1338. [DOI] [PubMed] [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Warot X., Fromental-Ramain C., Fraulob V., Chambon P., Dollé P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 1997 Dec;124(23):4781–4791. doi: 10.1242/dev.124.23.4781. [DOI] [PubMed] [Google Scholar]
  34. Woodburne Michael O., Rich Thomas H., Springer Mark S. The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol. 2003 Aug;28(2):360–385. doi: 10.1016/s1055-7903(03)00113-1. [DOI] [PubMed] [Google Scholar]
  35. Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol. 1998 May;15(5):568–573. doi: 10.1093/oxfordjournals.molbev.a025957. [DOI] [PubMed] [Google Scholar]
  36. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
  37. Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000 Dec 1;15(12):496–503. doi: 10.1016/S0169-5347(00)01994-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yang Ziheng, Nielsen Rasmus. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002 Jun;19(6):908–917. doi: 10.1093/oxfordjournals.molbev.a004148. [DOI] [PubMed] [Google Scholar]
  39. Zhang Jianzhi. Frequent false detection of positive selection by the likelihood method with branch-site models. Mol Biol Evol. 2004 Mar 10;21(7):1332–1339. doi: 10.1093/molbev/msh117. [DOI] [PubMed] [Google Scholar]
  40. van Oostveen J., Bijl J., Raaphorst F., Walboomers J., Meijer C. The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia. 1999 Nov;13(11):1675–1690. doi: 10.1038/sj.leu.2401562. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15539344s01.pdf (179.6KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES