Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Nov 7;271(1554):2275–2282. doi: 10.1098/rspb.2004.2833

Reduced fecundity is the cost of cheating in RNA virus phi6.

John J Dennehy 1, Paul E Turner 1
PMCID: PMC1691856  PMID: 15539353

Abstract

Co-infection by multiple viruses affords opportunities for the evolution of cheating strategies to use intracellular resources. Cheating may be costly, however, when viruses infect cells alone. We previously allowed the RNA bacteriophage phi6 to evolve for 250 generations in replicated environments allowing co-infection of Pseudomonas phaseolicola bacteria. Derived genotypes showed great capacity to compete during co-infection, but suffered reduced performance in solo infections. Thus, the evolved viruses appear to be cheaters that sacrifice between-host fitness for within-host fitness. It is unknown, however, which stage of the lytic growth cycle is linked to the cost of cheating. Here, we examine the cost through burst assays, where lytic infection can be separated into three discrete phases (analogous to phage life history): dispersal stage, latent period (juvenile stage), and burst (adult stage). We compared growth of a representative cheater and its ancestor in environments where the cost occurs. The cost of cheating was shown to be reduced fecundity, because cheaters feature a significantly smaller burst size (progeny produced per infected cell) when infecting on their own. Interestingly, latent period (average burst time) of the evolved virus was much longer than that of the ancestor, indicating the cost does not follow a life history trade-off between timing of reproduction and lifetime fecundity. Our data suggest that interference competition allows high fitness of derived cheaters in mixed infections, and we discuss preferential encapsidation as one possible mechanism.

Full Text

The Full Text of this article is available as a PDF (173.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abedon S. T. Selection for lysis inhibition in bacteriophage. J Theor Biol. 1990 Oct 21;146(4):501–511. doi: 10.1016/s0022-5193(05)80375-3. [DOI] [PubMed] [Google Scholar]
  2. Bremermann H. J., Pickering J. A game-theoretical model of parasite virulence. J Theor Biol. 1983 Feb 7;100(3):411–426. doi: 10.1016/0022-5193(83)90438-1. [DOI] [PubMed] [Google Scholar]
  3. Bull J. J., Pfennig David W., Wang Ing-Nang. Genetic details, optimization and phage life histories. Trends Ecol Evol. 2004 Feb;19(2):76–82. doi: 10.1016/j.tree.2003.10.008. [DOI] [PubMed] [Google Scholar]
  4. Buss L. W. Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5337–5341. doi: 10.1073/pnas.79.17.5337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chao L., Hanley K. A., Burch C. L., Dahlberg C., Turner P. E. Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Q Rev Biol. 2000 Sep;75(3):261–275. doi: 10.1086/393499. [DOI] [PubMed] [Google Scholar]
  6. Chao L., Tran T. T., Tran T. T. The advantage of sex in the RNA virus phi6. Genetics. 1997 Nov;147(3):953–959. doi: 10.1093/genetics/147.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chao Lin, Rang Camilla U., Wong Linda E. Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage phi6. J Virol. 2002 Apr;76(7):3276–3281. doi: 10.1128/JVI.76.7.3276-3281.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cole C. N., Baltimore D. Defective interfering particles of poliovirus. 3. Interference and enrichment. J Mol Biol. 1973 May 25;76(3):345–361. doi: 10.1016/0022-2836(73)90509-3. [DOI] [PubMed] [Google Scholar]
  9. Crespi B. J. The evolution of social behavior in microorganisms. Trends Ecol Evol. 2001 Apr 1;16(4):178–183. doi: 10.1016/s0169-5347(01)02115-2. [DOI] [PubMed] [Google Scholar]
  10. Doermann A. H. Lysis and Lysis Inhibition with Escherichia coli Bacteriophage. J Bacteriol. 1948 Feb;55(2):257–276. doi: 10.1128/jb.55.2.257-276.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Falk B. W., Tian T., Yeh H. H. Luteovirus-associated viruses and subviral RNAs. Curr Top Microbiol Immunol. 1999;239:159–175. doi: 10.1007/978-3-662-09796-0_9. [DOI] [PubMed] [Google Scholar]
  12. Frank S. A. A kin selection model for the evolution of virulence. Proc Biol Sci. 1992 Dec 22;250(1329):195–197. doi: 10.1098/rspb.1992.0149. [DOI] [PubMed] [Google Scholar]
  13. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  14. Froissart Rémy, Wilke Claus O., Montville Rebecca, Remold Susanna K., Chao Lin, Turner Paul E. Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics. 2004 Sep;168(1):9–19. doi: 10.1534/genetics.104.030205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greig Duncan, Travisano Michael. The Prisoner's Dilemma and polymorphism in yeast SUC genes. Proc Biol Sci. 2004 Feb 7;271 (Suppl 3):S25–S26. doi: 10.1098/rsbl.2003.0083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knolle H. Host density and the evolution of parasite virulence. J Theor Biol. 1989 Jan 23;136(2):199–207. doi: 10.1016/s0022-5193(89)80226-7. [DOI] [PubMed] [Google Scholar]
  17. López-Ferber Miguel, Simón Oihane, Williams Trevor, Caballero Primitivo. Defective or effective? Mutualistic interactions between virus genotypes. Proc Biol Sci. 2003 Nov 7;270(1530):2249–2255. doi: 10.1098/rspb.2003.2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mindich L., Cohen J., Weisburd M. Isolation of nonsense suppressor mutants in Pseudomonas. J Bacteriol. 1976 Apr;126(1):177–182. doi: 10.1128/jb.126.1.177-182.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mindich L. Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage phi6. Microbiol Mol Biol Rev. 1999 Mar;63(1):149–160. doi: 10.1128/mmbr.63.1.149-160.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mindich L., Qiao X., Qiao J., Onodera S., Romantschuk M., Hoogstraten D. Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J Bacteriol. 1999 Aug;181(15):4505–4508. doi: 10.1128/jb.181.15.4505-4508.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olkkonen V. M., Bamford D. H. Quantitation of the adsorption and penetration stages of bacteriophage phi 6 infection. Virology. 1989 Jul;171(1):229–238. doi: 10.1016/0042-6822(89)90530-8. [DOI] [PubMed] [Google Scholar]
  22. Qiu W., Scholthof K. B. Defective interfering RNAs of a satellite virus. J Virol. 2001 Jun;75(11):5429–5432. doi: 10.1128/JVI.75.11.5429-5432.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roux L., Simon A. E., Holland J. J. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv Virus Res. 1991;40:181–211. doi: 10.1016/S0065-3527(08)60279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simon K. O., Cardamone J. J., Jr, Whitaker-Dowling P. A., Youngner J. S., Widnell C. C. Cellular mechanisms in the superinfection exclusion of vesicular stomatitis virus. Virology. 1990 Jul;177(1):375–379. doi: 10.1016/0042-6822(90)90494-c. [DOI] [PubMed] [Google Scholar]
  25. Singh I. R., Suomalainen M., Varadarajan S., Garoff H., Helenius A. Multiple mechanisms for the inhibition of entry and uncoating of superinfecting Semliki Forest virus. Virology. 1997 Apr 28;231(1):59–71. doi: 10.1006/viro.1997.8492. [DOI] [PubMed] [Google Scholar]
  26. Strassmann J. E., Zhu Y., Queller D. C. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature. 2000 Dec 21;408(6815):965–967. doi: 10.1038/35050087. [DOI] [PubMed] [Google Scholar]
  27. Travisano Michael, Velicer Gregory J. Strategies of microbial cheater control. Trends Microbiol. 2004 Feb;12(2):72–78. doi: 10.1016/j.tim.2003.12.009. [DOI] [PubMed] [Google Scholar]
  28. Turner P. E., Burch C. L., Hanley K. A., Chao L. Hybrid frequencies confirm limit to coinfection in the RNA bacteriophage phi6. J Virol. 1999 Mar;73(3):2420–2424. doi: 10.1128/jvi.73.3.2420-2424.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turner P. E., Chao L. Prisoner's dilemma in an RNA virus. Nature. 1999 Apr 1;398(6726):441–443. doi: 10.1038/18913. [DOI] [PubMed] [Google Scholar]
  30. Turner P. E., Chao L. Sex and the evolution of intrahost competition in RNA virus phi6. Genetics. 1998 Oct;150(2):523–532. doi: 10.1093/genetics/150.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Turner Paul E., Chao Lin. Escape from Prisoner's Dilemma in RNA phage phi6. Am Nat. 2003 Mar;161(3):497–505. doi: 10.1086/367880. [DOI] [PubMed] [Google Scholar]
  32. Turner Paul E. Searching for the advantages of virus sex. Orig Life Evol Biosph. 2003 Feb;33(1):95–108. doi: 10.1023/a:1023973015054. [DOI] [PubMed] [Google Scholar]
  33. VON MAGNUS P. Incomplete forms of influenza virus. Adv Virus Res. 1954;2:59–79. doi: 10.1016/s0065-3527(08)60529-1. [DOI] [PubMed] [Google Scholar]
  34. Velicer G. J., Kroos L., Lenski R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature. 2000 Apr 6;404(6778):598–601. doi: 10.1038/35007066. [DOI] [PubMed] [Google Scholar]
  35. Velicer Gregory J. Social strife in the microbial world. Trends Microbiol. 2003 Jul;11(7):330–337. doi: 10.1016/s0966-842x(03)00152-5. [DOI] [PubMed] [Google Scholar]
  36. Vidaver A. K., Koski R. K., Van Etten J. L. Bacteriophage phi6: a Lipid-Containing Virus of Pseudomonas phaseolicola. J Virol. 1973 May;11(5):799–805. doi: 10.1128/jvi.11.5.799-805.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. West Stuart A., Buckling Angus. Cooperation, virulence and siderophore production in bacterial parasites. Proc Biol Sci. 2003 Jan 7;270(1510):37–44. doi: 10.1098/rspb.2002.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zebovitz E., Brown A. Interference among group A arboviruses. J Virol. 1968 Nov;2(11):1283–1289. doi: 10.21236/ad0844170. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES