Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Nov 7;271(1554):2257–2265. doi: 10.1098/rspb.2004.2819

Partial island submergence and speciation in an adaptive radiation: a multilocus analysis of the Cuban green anoles.

Richard E Glor 1, Matthew E Gifford 1, Allan Larson 1, Jonathan B Losos 1, Lourdes Rodríguez Schettino 1, Ada R Chamizo Lara 1, Todd R Jackman 1
PMCID: PMC1691862  PMID: 15539351

Abstract

Sympatric speciation is often proposed to account for species-rich adaptive radiations within lakes or islands, where barriers to gene flow or dispersal may be lacking. However, allopatric speciation may also occur in such situations, especially when ranges are fragmented by fluctuating water levels. We test the hypothesis that Miocene fragmentation of Cuba into three palaeo-archipelagos accompanied species-level divergence in the adaptive radiation of West Indian Anolis lizards. Analysis of morphology, mitochondrial DNA (mt DNA) and nuclear DNA in the Cuban green anoles (carolinensis subgroup) strongly supports three pre dictions made by this hypothesis. First, three geographical sets of populations, whose ranges correspond with palaeo-archipelago boundaries, are distinct and warrant recognition as independent evolutionary lineages or species. Coalescence of nuclear sequence fragments sampled from these species and the large divergences observed between their mtDNA haplotypes suggest separation prior to the subsequent unification of Cuba ca. 5 Myr ago. Second, molecular phylogenetic relationships among these species reflect historical geographical relationships rather than morphological similarity. Third, all three species remain distinct despite extensive geographical contact subsequent to island unification, occasional hybridization and introgression of mtDNA haplotypes. Allopatric speciation initiated during partial island submergence may play an important role in speciation during the adaptive radiation of Anolis lizards.

Full Text

The Full Text of this article is available as a PDF (298.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birks Sharon M., Edwards Scott V. A phylogeny of the megapodes (Aves: Megapodiidae) based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol. 2002 Jun;23(3):408–421. doi: 10.1016/s1055-7903(02)00002-7. [DOI] [PubMed] [Google Scholar]
  2. Bossuyt F., Milinkovitch M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6585–6590. doi: 10.1073/pnas.97.12.6585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Wei-Jen, Bonillo Céline, Lecointre Guillaume. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol. 2003 Feb;26(2):262–288. doi: 10.1016/s1055-7903(02)00371-8. [DOI] [PubMed] [Google Scholar]
  4. García-París M., Alcobendas M., Buckley D., Wake D. B. Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution. 2003 Jan;57(1):129–143. doi: 10.1111/j.0014-3820.2003.tb00221.x. [DOI] [PubMed] [Google Scholar]
  5. Gifford Matthew E., Powell Robert, Larson Allan, Gutberlet Ronald L., Jr Population structure and history of a phenotypically variable teiid lizard (Ameiva chrysolaema) from Hispaniola: the influence of a geologically complex island. Mol Phylogenet Evol. 2004 Sep;32(3):735–748. doi: 10.1016/j.ympev.2004.04.003. [DOI] [PubMed] [Google Scholar]
  6. Glor Richard E., Kolbe Jason J., Powell Robert, Larson Allan, Losos Jonathan. Phylogenetic analysis of ecological and morphological diversification in Hispaniolan trunk-ground anoles (Anolis cybotes group). Evolution. 2003 Oct;57(10):2383–2397. doi: 10.1111/j.0014-3820.2003.tb00250.x. [DOI] [PubMed] [Google Scholar]
  7. Good Jeffrey M., Demboski John R., Nagorsen David W., Sullivan Jack. Phylogeography and introgressive hybridization: chipmunks (genus Tamias) in the northern Rocky Mountains. Evolution. 2003 Aug;57(8):1900–1916. doi: 10.1111/j.0014-3820.2003.tb00597.x. [DOI] [PubMed] [Google Scholar]
  8. Goodman S. J., Barton N. H., Swanson G., Abernethy K., Pemberton J. M. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics. 1999 May;152(1):355–371. doi: 10.1093/genetics/152.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gyllensten U., Wilson A. C. Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genet Res. 1987 Feb;49(1):25–29. doi: 10.1017/s0016672300026690. [DOI] [PubMed] [Google Scholar]
  10. Hare Matthew P., Cipriano Frank, Palumbi Stephen R. Genetic evidence on the demography of speciation in allopatric dolphin species. Evolution. 2002 Apr;56(4):804–816. doi: 10.1111/j.0014-3820.2002.tb01391.x. [DOI] [PubMed] [Google Scholar]
  11. Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
  12. Jackman Todd R., Irschick Duncan J., De Queiroz Kevin, Losos Jonathan B., Larson Allan. Molecular phylogenetic perspective on evolution of lizards of the Anolis grahami series. J Exp Zool. 2002 Apr 15;294(1):1–16. doi: 10.1002/jez.10073. [DOI] [PubMed] [Google Scholar]
  13. Kawamura S., Yokoyama S. Cloning of the rhodopsin-encoding gene from the rod-less lizard Anolis carolinensis. Gene. 1994 Nov 18;149(2):267–270. doi: 10.1016/0378-1119(94)90159-7. [DOI] [PubMed] [Google Scholar]
  14. Losos J. B., Schluter D. Analysis of an evolutionary species-area relationship. Nature. 2000 Dec 14;408(6814):847–850. doi: 10.1038/35048558. [DOI] [PubMed] [Google Scholar]
  15. Macey J. R., Schulte J. A., 2nd, Ananjeva N. B., Larson A., Rastegar-Pouyani N., Shammakov S. M., Papenfuss T. J. Phylogenetic relationships among Agamid lizards of the Laudakia caucasia species group: testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau. Mol Phylogenet Evol. 1998 Aug;10(1):118–131. doi: 10.1006/mpev.1997.0478. [DOI] [PubMed] [Google Scholar]
  16. Malhotra A., Thorpe R. S. The dynamics of natural selection and vicariance in the Dominican anole: patterns of within-island molecular and morphological divergence. Evolution. 2000 Feb;54(1):245–258. doi: 10.1111/j.0014-3820.2000.tb00025.x. [DOI] [PubMed] [Google Scholar]
  17. Morando Mariana, Avila Luciano J., Sites Jack W., Jr Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongatus-kriegi complex (Squamata: Liolaemidae) in Andean-Patagonian South America. Syst Biol. 2003 Apr;52(2):159–185. doi: 10.1080/10635150390192717. [DOI] [PubMed] [Google Scholar]
  18. Page R. D. Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Mol Phylogenet Evol. 2000 Jan;14(1):89–106. doi: 10.1006/mpev.1999.0676. [DOI] [PubMed] [Google Scholar]
  19. Schliewen U. K., Tautz D., Päbo S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature. 1994 Apr 14;368(6472):629–632. doi: 10.1038/368629a0. [DOI] [PubMed] [Google Scholar]
  20. Schliewen U., Rassmann K., Markmann M., Markert J., Kocher T., Tautz D. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol Ecol. 2001 Jun;10(6):1471–1488. doi: 10.1046/j.1365-294x.2001.01276.x. [DOI] [PubMed] [Google Scholar]
  21. Schneider C. J. Distinguishing between primary and secondary intergradation among morphologically differentiated populations of Anolis marmoratus. Mol Ecol. 1996 Apr;5(2):239–249. [PubMed] [Google Scholar]
  22. Shaw P. W., Turner G. F., Idid M. R., Robinson R. L., Carvalho G. R. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proc Biol Sci. 2000 Nov 22;267(1459):2273–2280. doi: 10.1098/rspb.2000.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stenson Andrew G., Malhotra Anita, Thorpe Roger S. Population differentiation and nuclear gene flow in the Dominican anole (Anolis oculatus). Mol Ecol. 2002 Sep;11(9):1679–1688. doi: 10.1046/j.1365-294x.2002.01564.x. [DOI] [PubMed] [Google Scholar]
  24. Sturmbauer C., Baric S., Salzburger W., Rüber L., Verheyen E. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Mol Biol Evol. 2001 Feb;18(2):144–154. doi: 10.1093/oxfordjournals.molbev.a003788. [DOI] [PubMed] [Google Scholar]
  25. Sturmbauer C., Meyer A. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature. 1992 Aug 13;358(6387):578–581. doi: 10.1038/358578a0. [DOI] [PubMed] [Google Scholar]
  26. Tegelström H. Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus). J Mol Evol. 1987;24(3):218–227. doi: 10.1007/BF02111235. [DOI] [PubMed] [Google Scholar]
  27. Thomas Yan, Bethenod Marie-Thérèse, Pelozuelo Laurent, Frérot Brigitte, Bourguet Denis. Genetic isolation between two sympatric host-plant races of the European corn borer, Ostrinia nubilalis Hübner. I. Sex pheromone, moth emergence timing, and parasitism. Evolution. 2003 Feb;57(2):261–273. doi: 10.1111/j.0014-3820.2003.tb00261.x. [DOI] [PubMed] [Google Scholar]
  28. Thorpe R. S., Stenson A. G. Phylogeny, paraphyly and ecological adaptation of the colour and pattern in the Anolis roquet complex on Martinique. Mol Ecol. 2003 Jan;12(1):117–132. doi: 10.1046/j.1365-294x.2003.01704.x. [DOI] [PubMed] [Google Scholar]
  29. Veith M., Kosuch J., Vences M. Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Ranidae). Mol Phylogenet Evol. 2003 Feb;26(2):310–327. doi: 10.1016/s1055-7903(02)00324-x. [DOI] [PubMed] [Google Scholar]
  30. Wiens John J., Penkrot Tonya A. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol. 2002 Feb;51(1):69–91. doi: 10.1080/106351502753475880. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15539351s01.pdf (178KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES