Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Nov 22;271(1555):2381–2386. doi: 10.1098/rspb.2004.2874

Developmental stress selectively affects the song control nucleus HVC in the zebra finch.

Katherine L Buchanan 1, Stefan Leitner 1, Karen A Spencer 1, Arthur R Goldsmith 1, Clive K Catchpole 1
PMCID: PMC1691866  PMID: 15556891

Abstract

Songbirds sing complex songs as a result of evolution through sexual selection. The evolution of such sexually selected traits requires genetic control, as well as selection on their expression. Song is controlled by a discrete neural pathway in the brain, and song complexity has been shown to correlate with the volume of specific song control nuclei. As such, the development of these nuclei, in particular the high vocal centre (HVC), is thought to be the mechanism controlling signal expression indicating male quality. We tested the hypothesis that early developmental stress selectively affects adult HVC size, compared with other brain nuclei. We did this by raising cross-fostered zebra finches (Taeniopygia guttata) under stressed and controlled conditions and determining the effect on adult HVC size. Our results confirm the strong influence of environmental conditions, particularly on HVC development, and therefore on the expression of complex songs. The results also show that both environmental and genetic factors affect the development of several brain nuclei, highlighting the developmental plasticity of the songbird brain. In all, these results explain how the complex song repertoires of songbirds can evolve as honest indicators of male quality.

Full Text

The Full Text of this article is available as a PDF (365.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airey D. C., Buchanan K. L., Szekely T., Catchpole C. K., DeVoogd T. J. Song, sexual selection, and a song control nucleus (HVc) in the brains of European sedge warblers. J Neurobiol. 2000 Jul;44(1):1–6. [PubMed] [Google Scholar]
  2. Airey D. C., DeVoogd T. J. Greater song complexity is associated with augmented song system anatomy in zebra finches. Neuroreport. 2000 Jul 14;11(10):2339–2344. doi: 10.1097/00001756-200007140-00054. [DOI] [PubMed] [Google Scholar]
  3. Bottjer S. W., Johnson F. Circuits, hormones, and learning: vocal behavior in songbirds. J Neurobiol. 1997 Nov;33(5):602–618. doi: 10.1002/(sici)1097-4695(19971105)33:5<602::aid-neu8>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  4. Brainard Michael S., Doupe Allison J. What songbirds teach us about learning. Nature. 2002 May 16;417(6886):351–358. doi: 10.1038/417351a. [DOI] [PubMed] [Google Scholar]
  5. Breuner C. W., Orchinik M. Seasonal regulation of membrane and intracellular corticosteroid receptors in the house sparrow brain. J Neuroendocrinol. 2001 May;13(5):412–420. doi: 10.1046/j.1365-2826.2001.00646.x. [DOI] [PubMed] [Google Scholar]
  6. Buchanan K. L., Spencer K. A., Goldsmith A. R., Catchpole C. K. Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proc Biol Sci. 2003 Jun 7;270(1520):1149–1156. doi: 10.1098/rspb.2003.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devoogd T. J., Krebs J. R., Healy S. D., Purvis A. Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proc Biol Sci. 1993 Nov 22;254(1340):75–82. doi: 10.1098/rspb.1993.0129. [DOI] [PubMed] [Google Scholar]
  8. Gahr M. Developmental changes in the distribution of oestrogen receptor mRNA expressing cells in the forebrain of female, male and masculinized female zebra finches. Neuroreport. 1996 Nov 4;7(15-17):2469–2473. doi: 10.1097/00001756-199611040-00013. [DOI] [PubMed] [Google Scholar]
  9. Gahr M., Konishi M. Developmental changes in estrogen-sensitive neurons in the forebrain of the zebra finch. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7380–7383. doi: 10.1073/pnas.85.19.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garamszegi László Zsolt, Eens Marcel. Brain space for a learned task: strong intraspecific evidence for neural correlates of singing behavior in songbirds. Brain Res Brain Res Rev. 2004 Mar;44(2-3):187–193. doi: 10.1016/j.brainresrev.2003.12.001. [DOI] [PubMed] [Google Scholar]
  11. Kim Yong-Hwan, Perlman William R., Arnold Arthur P. Expression of androgen receptor mRNA in zebra finch song system: developmental regulation by estrogen. J Comp Neurol. 2004 Feb 16;469(4):535–547. doi: 10.1002/cne.11033. [DOI] [PubMed] [Google Scholar]
  12. MacDougall-Shackleton S. A., Hulse S. H., Ball G. F. Neural correlates of singing behavior in male zebra finches (Taeniopygia guttata). J Neurobiol. 1998 Sep 5;36(3):421–430. [PubMed] [Google Scholar]
  13. Metzdorf R., Gahr M., Fusani L. Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J Comp Neurol. 1999 Apr 28;407(1):115–129. [PubMed] [Google Scholar]
  14. Nowicki S., Hasselquist D., Bensch S., Peters S. Nestling growth and song repertoire size in great reed warblers: evidence for song learning as an indicator mechanism in mate choice. Proc Biol Sci. 2000 Dec 7;267(1460):2419–2424. doi: 10.1098/rspb.2000.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nowicki S., Searcy W. A., Peters S. Brain development, song learning and mate choice in birds: a review and experimental test of the "nutritional stress hypothesis". J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Oct 19;188(11-12):1003–1014. doi: 10.1007/s00359-002-0361-3. [DOI] [PubMed] [Google Scholar]
  16. Nowicki Stephen, Searcy William A., Peters Susan. Quality of song learning affects female response to male bird song. Proc Biol Sci. 2002 Sep 22;269(1503):1949–1954. doi: 10.1098/rspb.2002.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reiner Anton, Perkel David J., Bruce Laura L., Butler Ann B., Csillag András, Kuenzel Wayne, Medina Loreta, Paxinos George, Shimizu Toru, Striedter Georg. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol. 2004 May 31;473(3):377–414. doi: 10.1002/cne.20118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spencer K. A., Buchanan K. L., Goldsmith A. R., Catchpole C. K. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm Behav. 2003 Aug;44(2):132–139. doi: 10.1016/s0018-506x(03)00124-7. [DOI] [PubMed] [Google Scholar]
  19. Ward B. C., Nordeen E. J., Nordeen K. W. Anatomical and ontogenetic factors producing variation in HVc neuron number in zebra finches. Brain Res. 2001 Jun 22;904(2):318–326. doi: 10.1016/s0006-8993(01)02488-x. [DOI] [PubMed] [Google Scholar]
  20. Zahavi A. Mate selection-a selection for a handicap. J Theor Biol. 1975 Sep;53(1):205–214. doi: 10.1016/0022-5193(75)90111-3. [DOI] [PubMed] [Google Scholar]
  21. von Schantz T., Bensch S., Grahn M., Hasselquist D., Wittzell H. Good genes, oxidative stress and condition-dependent sexual signals. Proc Biol Sci. 1999 Jan 7;266(1414):1–12. doi: 10.1098/rspb.1999.0597. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES