Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Nov 22;271(1555):2319–2326. doi: 10.1098/rspb.2004.2884

Colour constancy under simultaneous changes in surface position and illuminant.

Kinjiro Amano 1, David H Foster 1
PMCID: PMC1691874  PMID: 15556884

Abstract

Two kinds of constancy underlie the everyday perception of surface colour: constancy under changes in illuminant and constancy under changes in surface position. Classically, these two constancies seem to place conflicting demands on the visual system: to both take into account the region surrounding a surface and also discount it. It is shown here, however, that the ability of observers to make surface-colour matches across simultaneous changes in test-surface position and illuminant in computer-generated 'Mondrian' patterns is almost as good as across changes in illuminant alone. Performance was no poorer when the surfaces surrounding the test surface were permuted, or when information from a potential comparison surface, the one with the highest luminance, was suppressed. Computer simulations of cone-photoreceptor activity showed that a reliable cue for making surface-colour matches in all experimental conditions was provided by the ratios of cone excitations between the test surfaces and a spatial average over the whole pattern.

Full Text

The Full Text of this article is available as a PDF (264.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend L. E., Jr, Reeves A., Schirillo J., Goldstein R. Simultaneous color constancy: paper with diverse Munsell values. J Opt Soc Am A. 1991 Apr;8(4):661–672. doi: 10.1364/josaa.8.000661. [DOI] [PubMed] [Google Scholar]
  2. Bloj M. G., Kersten D., Hurlbert A. C. Perception of three-dimensional shape influences colour perception through mutual illumination. Nature. 1999 Dec 23;402(6764):877–879. doi: 10.1038/47245. [DOI] [PubMed] [Google Scholar]
  3. Brainard D. H., Brunt W. A., Speigle J. M. Color constancy in the nearly natural image. I. Asymmetric matches. J Opt Soc Am A Opt Image Sci Vis. 1997 Sep;14(9):2091–2110. doi: 10.1364/josaa.14.002091. [DOI] [PubMed] [Google Scholar]
  4. Brenner E., Cornelissen F. W. When is a background equivalent? Sparse chromatic context revisited. Vision Res. 1998 Jun;38(12):1789–1793. doi: 10.1016/s0042-6989(97)00404-5. [DOI] [PubMed] [Google Scholar]
  5. Brenner Eli, Ruiz Jesus S., Herráiz Esther M., Cornelissen Frans W., Smeets Jeroen B. J. Chromatic induction and the layout of colours within a complex scene. Vision Res. 2003 Jun;43(13):1413–1421. doi: 10.1016/s0042-6989(03)00167-6. [DOI] [PubMed] [Google Scholar]
  6. Bäuml K. H. Simultaneous color constancy: how surface color perception varies with the illuminant. Vision Res. 1999 Apr;39(8):1531–1550. doi: 10.1016/s0042-6989(98)00192-8. [DOI] [PubMed] [Google Scholar]
  7. Cornelissen F. W., Brenner E. Simultaneous colour constancy revisited: an analysis of viewing strategies. Vision Res. 1995 Sep;35(17):2431–2448. [PubMed] [Google Scholar]
  8. Craven B. J., Foster D. H. An operational approach to colour constancy. Vision Res. 1992 Jul;32(7):1359–1366. doi: 10.1016/0042-6989(92)90228-b. [DOI] [PubMed] [Google Scholar]
  9. Foster D. H., Amano K., Nascimento S. M. Colour constancy from temporal cues: better matches with less variability under fast illuminant changes. Vision Res. 2001 Feb;41(3):285–293. doi: 10.1016/s0042-6989(00)00239-x. [DOI] [PubMed] [Google Scholar]
  10. Foster D. H., Nascimento S. M., Amano K., Arend L., Linnell K. J., Nieves J. L., Plet S., Foster J. S. Parallel detection of violations of color constancy. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):8151–8156. doi: 10.1073/pnas.141505198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foster D. H., Nascimento S. M. Relational colour constancy from invariant cone-excitation ratios. Proc Biol Sci. 1994 Aug 22;257(1349):115–121. doi: 10.1098/rspb.1994.0103. [DOI] [PubMed] [Google Scholar]
  12. Foster David H. Does colour constancy exist? Trends Cogn Sci. 2003 Oct;7(10):439–443. doi: 10.1016/j.tics.2003.08.002. [DOI] [PubMed] [Google Scholar]
  13. Gilchrist A., Kossyfidis C., Bonato F., Agostini T., Cataliotti J., Li X., Spehar B., Annan V., Economou E. An anchoring theory of lightness perception. Psychol Rev. 1999 Oct;106(4):795–834. doi: 10.1037/0033-295x.106.4.795. [DOI] [PubMed] [Google Scholar]
  14. Golz Jürgen, MacLeod Donald I. A. Influence of scene statistics on colour constancy. Nature. 2002 Feb 7;415(6872):637–640. doi: 10.1038/415637a. [DOI] [PubMed] [Google Scholar]
  15. Hurlbert Anya, Wolf Kit. Color contrast: a contributory mechanism to color constancy. Prog Brain Res. 2004;144:147–160. doi: 10.1016/s0079-6123(03)14410-x. [DOI] [PubMed] [Google Scholar]
  16. Jenness J. W., Shevell S. K. Color appearance with sparse chromatic context. Vision Res. 1995 Mar;35(6):797–805. doi: 10.1016/0042-6989(94)00169-m. [DOI] [PubMed] [Google Scholar]
  17. Kraft J. M., Brainard D. H. Mechanisms of color constancy under nearly natural viewing. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):307–312. doi: 10.1073/pnas.96.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Land E. H., McCann J. J. Lightness and retinex theory. J Opt Soc Am. 1971 Jan;61(1):1–11. doi: 10.1364/josa.61.000001. [DOI] [PubMed] [Google Scholar]
  19. Linnell Karina J., Foster David H. Scene articulation: dependence of illuminant estimates on number of surfaces. Perception. 2002;31(2):151–159. doi: 10.1068/p03sp. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maloney Laurence T. Illuminant estimation as cue combination. J Vis. 2002;2(6):493–504. doi: 10.1167/2.6.6. [DOI] [PubMed] [Google Scholar]
  21. Monnier Patrick, Shevell Steven K. Large shifts in color appearance from patterned chromatic backgrounds. Nat Neurosci. 2003 Aug;6(8):801–802. doi: 10.1038/nn1099. [DOI] [PubMed] [Google Scholar]
  22. Nascimento S. M., Foster D. H. Detecting natural changes of cone-excitation ratios in simple and complex coloured images. Proc Biol Sci. 1997 Sep 22;264(1386):1395–1402. doi: 10.1098/rspb.1997.0194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nascimento S. M., Foster D. H. Relational color constancy in achromatic and isoluminant images. J Opt Soc Am A Opt Image Sci Vis. 2000 Feb;17(2):225–231. doi: 10.1364/josaa.17.000225. [DOI] [PubMed] [Google Scholar]
  24. Nascimento Sérgio M. C., Ferreira Flávio P., Foster David H. Statistics of spatial cone-excitation ratios in natural scenes. J Opt Soc Am A Opt Image Sci Vis. 2002 Aug;19(8):1484–1490. doi: 10.1364/josaa.19.001484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nascimento Sérgio M. C., de Almeida Vasco M. N., Fiadeiro Paulo T., Foster David H. Minimum-variance cone-excitation ratios and the limits of relational color constancy. Vis Neurosci. 2004 May-Jun;21(3):337–340. doi: 10.1017/s095252380421327x. [DOI] [PubMed] [Google Scholar]
  26. Purves D., Lotto R. B., Williams S. M., Nundy S., Yang Z. Why we see things the way we do: evidence for a wholly empirical strategy of vision. Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):285–297. doi: 10.1098/rstb.2000.0772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ripamonti Caterina, Westland Stephen. Prediction of transparency perception based on cone-excitation ratios. J Opt Soc Am A Opt Image Sci Vis. 2003 Sep;20(9):1673–1680. doi: 10.1364/josaa.20.001673. [DOI] [PubMed] [Google Scholar]
  28. Shapley R. The importance of contrast for the activity of single neurons, the VEP and perception. Vision Res. 1986;26(1):45–61. doi: 10.1016/0042-6989(86)90070-2. [DOI] [PubMed] [Google Scholar]
  29. Shevell S. K., Wei J. Chromatic induction: border contrast or adaptation to surrounding light? Vision Res. 1998 Jun;38(11):1561–1566. doi: 10.1016/s0042-6989(98)00006-6. [DOI] [PubMed] [Google Scholar]
  30. Wachtler T., Albright T. D., Sejnowski T. J. Nonlocal interactions in color perception: nonlinear processing of chromatic signals from remote inducers. Vision Res. 2001 May;41(12):1535–1546. doi: 10.1016/s0042-6989(01)00017-7. [DOI] [PubMed] [Google Scholar]
  31. Westland S., Ripamonti C. Invariant cone-excitation ratios may predict transparency. J Opt Soc Am A Opt Image Sci Vis. 2000 Feb;17(2):255–264. doi: 10.1364/josaa.17.000255. [DOI] [PubMed] [Google Scholar]
  32. Whittle P., Challands P. D. The effect of background luminance on the brightness of flashes. Vision Res. 1969 Sep;9(9):1095–1110. doi: 10.1016/0042-6989(69)90050-9. [DOI] [PubMed] [Google Scholar]
  33. Yang J. N., Maloney L. T. Illuminant cues in surface color perception: tests of three candidate cues. Vision Res. 2001 Sep;41(20):2581–2600. doi: 10.1016/s0042-6989(01)00143-2. [DOI] [PubMed] [Google Scholar]
  34. de Almeida Vasco M. N., Fiadeiro Paulo T., Nascimento Sérgio M. C. Color constancy by asymmetric color matching with real objects in three-dimensional scenes. Vis Neurosci. 2004 May-Jun;21(3):341–345. doi: 10.1017/s0952523804213074. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES