Abstract
Sexual selection is commonly envisaged as a force working in opposition to natural selection, because extravagant or exaggerated traits could apparently have never evolved via natural selection alone. There is good evidence that a selection load imposed by sexual selection may be eased experimentally by restricting the opportunity for it to operate. Sexual selection could therefore potentially play an important role in influencing the risk of extinction that a population faces, thereby contributing to the apparent selectivity of extinctions. Conversely, recent theory predicts that the likelihood of extinction may decrease when sexual selection is operating because it could accelerate the rate of adaptation in concert with natural selection. So far, comparative evidence (coming mostly from birds) has generally indicated support for the former scenario, but the question remains open. The aim of this study was therefore to examine whether the level of sexual selection (measured as residual testes mass and sexual size dimorphism) was related to the risk of extinction that mammals are currently experiencing. We found no evidence for a relationship between these factors, although our analyses may have been confounded by the possible dominating effect of contemporary anthropogenic factors.
Full Text
The Full Text of this article is available as a PDF (254.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal A. F. Sexual selection and the maintenance of sexual reproduction. Nature. 2001 Jun 7;411(6838):692–695. doi: 10.1038/35079590. [DOI] [PubMed] [Google Scholar]
- Bininda-Emonds O. R., Gittleman J. L., Purvis A. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev Camb Philos Soc. 1999 May;74(2):143–175. doi: 10.1017/s0006323199005307. [DOI] [PubMed] [Google Scholar]
- Diamond J. M. The present, past and future of human-caused extinctions. Philos Trans R Soc Lond B Biol Sci. 1989 Nov 6;325(1228):469–477. doi: 10.1098/rstb.1989.0100. [DOI] [PubMed] [Google Scholar]
- Doherty Paul F., Jr, Sorci Gabriele, Royle J. Andrew, Hines James E., Nichols James D., Boulinier Thierry. Sexual selection affects local extinction and turnover in bird communities. Proc Natl Acad Sci U S A. 2003 Apr 7;100(10):5858–5862. doi: 10.1073/pnas.0836953100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn P. O., Whittingham L. A., Pitcher T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution. 2001 Jan;55(1):161–175. doi: 10.1111/j.0014-3820.2001.tb01281.x. [DOI] [PubMed] [Google Scholar]
- Fisher Diana O., Blomberg Simon P., Owens Ian P. F. Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc Biol Sci. 2003 Sep 7;270(1526):1801–1808. doi: 10.1098/rspb.2003.2447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage Matthew J. G., Parker Geoffrey A., Nylin Soren, Wiklund Christer. Sexual selection and speciation in mammals, butterflies and spiders. Proc Biol Sci. 2002 Nov 22;269(1507):2309–2316. doi: 10.1098/rspb.2002.2154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland B., Rice W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5083–5088. doi: 10.1073/pnas.96.9.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosken D. J., Garner T. W., Ward P. I. Sexual conflict selects for male and female reproductive characters. Curr Biol. 2001 Apr 3;11(7):489–493. doi: 10.1016/s0960-9822(01)00146-4. [DOI] [PubMed] [Google Scholar]
- Houle David, Kondrashov Alexey S. Coevolution of costly mate choice and condition-dependent display of good genes. Proc Biol Sci. 2002 Jan 7;269(1486):97–104. doi: 10.1098/rspb.2001.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaac Nick J. B., Cowlishaw Guy. How species respond to multiple extinction threats. Proc Biol Sci. 2004 Jun 7;271(1544):1135–1141. doi: 10.1098/rspb.2004.2724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones Kate E., Purvis Andy, Gittleman John L. Biological correlates of extinction risk in bats. Am Nat. 2003 Mar 28;161(4):601–614. doi: 10.1086/368289. [DOI] [PubMed] [Google Scholar]
- Jones Kate E., Purvis Andy, MacLarnon Ann, Bininda-Emonds Olaf R. P., Simmons Nancy B. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev Camb Philos Soc. 2002 May;77(2):223–259. doi: 10.1017/s1464793101005899. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S., Kondrashov F. A. Interactions among quantitative traits in the course of sympatric speciation. Nature. 1999 Jul 22;400(6742):351–354. doi: 10.1038/22514. [DOI] [PubMed] [Google Scholar]
- Liu F. G., Miyamoto M. M., Freire N. P., Ong P. Q., Tennant M. R., Young T. S., Gugel K. F. Molecular and morphological supertrees for eutherian (placental) mammals. Science. 2001 Mar 2;291(5509):1786–1789. doi: 10.1126/science.1056346. [DOI] [PubMed] [Google Scholar]
- Matthee C. A., Davis S. K. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. Mol Biol Evol. 2001 Jul;18(7):1220–1230. doi: 10.1093/oxfordjournals.molbev.a003908. [DOI] [PubMed] [Google Scholar]
- Michaux J., Reyes A., Catzeflis F. Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol. 2001 Nov;18(11):2017–2031. doi: 10.1093/oxfordjournals.molbev.a003743. [DOI] [PubMed] [Google Scholar]
- Morrow Edward H., Pitcher Trevor E. Sexual selection and the risk of extinction in birds. Proc Biol Sci. 2003 Sep 7;270(1526):1793–1799. doi: 10.1098/rspb.2003.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1997.0057. [DOI] [PMC free article] [Google Scholar]
- Preston B. T., Stevenson I. R., Pemberton J. M., Coltman D. W., Wilson K. Overt and covert competition in a promiscuous mammal: the importance of weaponry and testes size to male reproductive success. Proc Biol Sci. 2003 Mar 22;270(1515):633–640. doi: 10.1098/rspb.2002.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purvis A. A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):405–421. doi: 10.1098/rstb.1995.0078. [DOI] [PubMed] [Google Scholar]
- Purvis A., Gittleman J. L., Cowlishaw G., Mace G. M. Predicting extinction risk in declining species. Proc Biol Sci. 2000 Oct 7;267(1456):1947–1952. doi: 10.1098/rspb.2000.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purvis A., Jones K. E., Mace G. M. Extinction. Bioessays. 2000 Dec;22(12):1123–1133. doi: 10.1002/1521-1878(200012)22:12<1123::AID-BIES10>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
- Siller S., Department of Zoology, University of Oxford, UK. steven.siller@zoo.ox.ac.uk Sexual selection and the maintenance of sex. Nature. 2001 Jun 7;411(6838):689–692. doi: 10.1038/35079578. [DOI] [PubMed] [Google Scholar]
- Tanaka Y. Sexual selection enhances population extinction in a changing environment. J Theor Biol. 1996 Jun 7;180(3):197–206. doi: 10.1006/jtbi.1996.0096. [DOI] [PubMed] [Google Scholar]
- Whitlock M. C. Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution. 2000 Dec;54(6):1855–1861. doi: 10.1111/j.0014-3820.2000.tb01232.x. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.