Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Dec 7;271(1556):2473–2479. doi: 10.1098/rspb.2004.2913

Balancing food and predator pressure induces chronic stress in songbirds.

Michael Clinchy 1, Liana Zanette 1, Rudy Boonstra 1, John C Wingfield 1, James N M Smith 1
PMCID: PMC1691882  PMID: 15590598

Abstract

The never-ending tension between finding food and avoiding predators may be the most universal natural stressor wild animals experience. The 'chronic stress' hypothesis predicts: (i) an animal's stress profile will be a simultaneous function of food and predator pressures given the aforesaid tension; and (ii) these inseparable effects on physiology will produce inseparable effects on demography because of the resulting adverse health effects. This hypothesis was originally proposed to explain synergistic (inseparable) food and predator effects on demography in snowshoe hares (Lepus americanus). We conducted a 2 x 2, manipulative food addition plus natural predator reduction experiment on song sparrows (Melospiza melodia) that was, to our knowledge, the first to demonstrate comparable synergistic effects in a bird: added food and lower predator pressure in combination produced an increase in annual reproductive success almost double that expected from an additive model. Here we report the predicted simultaneous food and predator effects on measures of chronic stress in the context of the same experiment: birds at unfed, high predator pressure (HPP) sites had the highest stress levels; those at either unfed or HPP sites showed intermediate levels; and fed birds at low predator pressure sites had the lowest stress levels.

Full Text

The Full Text of this article is available as a PDF (162.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cockrem J. F., Silverin B. Sight of a predator can stimulate a corticosterone response in the great tit (Parus major). Gen Comp Endocrinol. 2002 Feb 1;125(2):248–255. doi: 10.1006/gcen.2001.7749. [DOI] [PubMed] [Google Scholar]
  2. Johnson M. M., Peters J. P. Technical note: an improved method to quantify nonesterified fatty acids in bovine plasma. J Anim Sci. 1993 Mar;71(3):753–756. doi: 10.2527/1993.713753x. [DOI] [PubMed] [Google Scholar]
  3. Kitaysky A. S., Kitaiskaia E. V., Piatt J. F., Wingfield J. C. Benefits and costs of increased levels of corticosterone in seabird chicks. Horm Behav. 2003 Jan;43(1):140–149. doi: 10.1016/s0018-506x(02)00030-2. [DOI] [PubMed] [Google Scholar]
  4. Krebs C. J., Boutin S., Boonstra R., Sinclair A. R., Smith J. N., Dale M. R., Martin K., Turkington R. Impact of food and predation on the snowshoe hare cycle. Science. 1995 Aug 25;269(5227):1112–1115. doi: 10.1126/science.269.5227.1112. [DOI] [PubMed] [Google Scholar]
  5. McEwen Bruce S., Wingfield John C. The concept of allostasis in biology and biomedicine. Horm Behav. 2003 Jan;43(1):2–15. doi: 10.1016/s0018-506x(02)00024-7. [DOI] [PubMed] [Google Scholar]
  6. McFarlane J. M., Curtis S. E. Multiple concurrent stressors in chicks. 3. Effects on plasma corticosterone and the heterophil:lymphocyte ratio. Poult Sci. 1989 Apr;68(4):522–527. doi: 10.3382/ps.0680522. [DOI] [PubMed] [Google Scholar]
  7. Nowicki Stephen, Searcy William A., Peters Susan. Quality of song learning affects female response to male bird song. Proc Biol Sci. 2002 Sep 22;269(1503):1949–1954. doi: 10.1098/rspb.2002.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Romero L. Michael. Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol. 2004 May;19(5):249–255. doi: 10.1016/j.tree.2004.03.008. [DOI] [PubMed] [Google Scholar]
  9. Sapolsky R. M., Romero L. M., Munck A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000 Feb;21(1):55–89. doi: 10.1210/edrv.21.1.0389. [DOI] [PubMed] [Google Scholar]
  10. Scheuerlein A., Van't Hof T. J., Gwinner E. Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proc Biol Sci. 2001 Aug 7;268(1476):1575–1582. doi: 10.1098/rspb.2001.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Silverin B. Behavioural and hormonal responses of the pied flycatcher to environmental stressors. Anim Behav. 1998 Jun;55(6):1411–1420. doi: 10.1006/anbe.1997.0717. [DOI] [PubMed] [Google Scholar]
  12. Totzke U., Hübinger A., Bairlein F. Glucose utilization rate and pancreatic hormone response to oral glucose loads are influenced by the migratory condition and fasting in the garden warbler (Sylvia borin). J Endocrinol. 1998 Aug;158(2):191–196. doi: 10.1677/joe.0.1580191. [DOI] [PubMed] [Google Scholar]
  13. Wingfield J. C., Vleck C. M., Moore M. C. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J Exp Zool. 1992 Dec 15;264(4):419–428. doi: 10.1002/jez.1402640407. [DOI] [PubMed] [Google Scholar]
  14. Zanette Liana, Smith James N. M., van Oort Harry, Clinchy Michael. Synergistic effects of food and predators on annual reproductive success in song sparrows. Proc Biol Sci. 2003 Apr 22;270(1517):799–803. doi: 10.1098/rspb.2002.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES