Abstract
In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or detachment. The transduction process is mediated by the mechanics of the whisker shaft and follicle-sinus complex (FSC), and the mechanics and electro-chemistry of mechanoreceptors within the FSC. An understanding of this transduction process and the nature of the primary neural codes generated is crucial for understanding more central sensory processing in the thalamus and cortex. However, the details of the peripheral processing are currently poorly understood. To overcome this deficiency in our knowledge, we constructed a simulated electro-mechanical model of the whisker-FSC-mechanoreceptor system in the rat and tested it against a variety of data drawn from the literature. The agreement was good enough to suggest that the model captures many of the key features of the peripheral whisker system in the rat.
Full Text
The Full Text of this article is available as a PDF (373.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumann K. I., Chan E., Halata Z., Senok S. S., Yung W. H. An isolated rat vibrissal preparation with stable responses of slowly adapting mechanoreceptors. Neurosci Lett. 1996 Jul 26;213(1):1–4. doi: 10.1016/0304-3940(96)12813-5. [DOI] [PubMed] [Google Scholar]
- Bell J., Holmes M. Model of the dynamics of receptor potential in a mechanoreceptor. Math Biosci. 1992 Jul;110(2):139–174. doi: 10.1016/0025-5564(92)90034-t. [DOI] [PubMed] [Google Scholar]
- Brecht M., Preilowski B., Merzenich M. M. Functional architecture of the mystacial vibrissae. Behav Brain Res. 1997 Mar;84(1-2):81–97. doi: 10.1016/s0166-4328(97)83328-1. [DOI] [PubMed] [Google Scholar]
- Carvell G. E., Simons D. J. Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci. 1990 Aug;10(8):2638–2648. doi: 10.1523/JNEUROSCI.10-08-02638.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dehnhardt G., Hyvärinen H., Palviainen A., Klauer G. Structure and innervation of the vibrissal follicle-sinus complex in the Australian water rat, Hydromys chrysogaster. J Comp Neurol. 1999 Sep 6;411(4):550–562. doi: 10.1002/(sici)1096-9861(19990906)411:4<550::aid-cne2>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
- Dykes R. W. Afferent fibers from mystacial vibrissae of cats and seals. J Neurophysiol. 1975 May;38(3):650–662. doi: 10.1152/jn.1975.38.3.650. [DOI] [PubMed] [Google Scholar]
- Dörfl J. The innervation of the mystacial region of the white mouse: A topographical study. J Anat. 1985 Oct;142:173–184. [PMC free article] [PubMed] [Google Scholar]
- Ebara Satomi, Kumamoto Kenzo, Matsuura Tadao, Mazurkiewicz Joseph E., Rice Frank L. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol. 2002 Jul 22;449(2):103–119. doi: 10.1002/cne.10277. [DOI] [PubMed] [Google Scholar]
- Gibson J. M., Welker W. I. Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. Somatosens Res. 1983;1(1):51–67. doi: 10.3109/07367228309144540. [DOI] [PubMed] [Google Scholar]
- Gibson J. M., Welker W. I. Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res. 1983;1(2):95–117. doi: 10.3109/07367228309144543. [DOI] [PubMed] [Google Scholar]
- Gottschaldt K. M., Iggo A., Young D. W. Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol. 1973 Dec;235(2):287–315. doi: 10.1113/jphysiol.1973.sp010388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottschaldt K. M., Vahle-Hinz C. Merkel cell receptors: structure and transducer function. Science. 1981 Oct 9;214(4517):183–186. doi: 10.1126/science.7280690. [DOI] [PubMed] [Google Scholar]
- Hahn J. F. Stimulus-response relationships in first-order sensory fibres from cat vibrissae. J Physiol. 1971 Feb;213(1):215–226. doi: 10.1113/jphysiol.1971.sp009377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartmann Mitra J., Johnson Nicholas J., Towal R. Blythe, Assad Christopher. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci. 2003 Jul 23;23(16):6510–6519. doi: 10.1523/JNEUROSCI.23-16-06510.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinfeld D., Berg R. W., O'Connor S. M. Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot Res. 1999;16(2):69–88. doi: 10.1080/08990229970528. [DOI] [PubMed] [Google Scholar]
- Lee K. J., Woolsey T. A. A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse. Brain Res. 1975 Dec 5;99(2):349–353. doi: 10.1016/0006-8993(75)90035-9. [DOI] [PubMed] [Google Scholar]
- Lichtenstein S. H., Carvell G. E., Simons D. J. Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res. 1990;7(1):47–65. doi: 10.3109/08990229009144697. [DOI] [PubMed] [Google Scholar]
- Maklad Adel, Fritzsch Bernd, Hansen Laura A. Innervation of the maxillary vibrissae in mice as revealed by anterograde and retrograde tract tracing. Cell Tissue Res. 2003 Nov 11;315(2):167–180. doi: 10.1007/s00441-003-0816-z. [DOI] [PubMed] [Google Scholar]
- Ozyazgan Irfan, Liman Narin, Dursun Nurcan, Güneş Işin. The effects of ovariectomy on the mechanical properties of skin in rats. Maturitas. 2002 Sep 30;43(1):65–74. doi: 10.1016/s0378-5122(02)00181-0. [DOI] [PubMed] [Google Scholar]
- Rice F. L., Mance A., Munger B. L. A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol. 1986 Oct 8;252(2):154–174. doi: 10.1002/cne.902520203. [DOI] [PubMed] [Google Scholar]
- Shoykhet M., Doherty D., Simons D. J. Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Mot Res. 2000;17(2):171–180. doi: 10.1080/08990220050020580. [DOI] [PubMed] [Google Scholar]
- Szwed Marcin, Bagdasarian Knarik, Ahissar Ehud. Encoding of vibrissal active touch. Neuron. 2003 Oct 30;40(3):621–630. doi: 10.1016/s0896-6273(03)00671-8. [DOI] [PubMed] [Google Scholar]
- Vincent Julian F. V. Biomimetic modelling. Philos Trans R Soc Lond B Biol Sci. 2003 Sep 29;358(1437):1597–1603. doi: 10.1098/rstb.2003.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welker E., Hoogland P. V., Van der Loos H. Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp Brain Res. 1988;73(2):411–435. doi: 10.1007/BF00248234. [DOI] [PubMed] [Google Scholar]
- Zucker E., Welker W. I. Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. Brain Res. 1969 Jan;12(1):138–156. doi: 10.1016/0006-8993(69)90061-4. [DOI] [PubMed] [Google Scholar]