Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Dec 22;271(1557):2541–2549. doi: 10.1098/rspb.2004.2842

Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia.

Thomas von Rintelen 1, Anthony B Wilson 1, Axel Meyer 1, Matthias Glaubrecht 1
PMCID: PMC1691893  PMID: 15615679

Abstract

Species flocks in ancient lakes have long been appreciated as ideal model systems for the study of speciation and adaptive processes. We here present data from a new invertebrate model system with intrinsic parameters distinct from those of other documented radiations. The ancient lakes on Sulawesi harbour an endemic species flock of at least 33 species of viviparous snails. Molecular data reveal multiple independent colonizations of the lakes by riverine ancestors. In each colonizing clade, parallel evolution of conspicuous shell morphologies, followed by a differentiation of trophic morphology and the development of habitat specificity can be observed. Extensive shell crushing experiments and strong dentition of the chelae observed in some lacustrine crab species suggest that coevolution with crabs, i.e. escalation, is the most likely cause of initial shell divergence. By contrast, repeated parallel evolution in radula morphology indicates that speciation within lineages is driven by divergent adaptation to different resources among sympatric taxa. The inclusion of coevolutionary processes is unique in this system compared with diversification models developed for vertebrate radiations.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson R. C., Markert J. A., Danley P. D., Kocher T. D. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5107–5110. doi: 10.1073/pnas.96.9.5107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROOKS J. L. Speciation in ancient lakes. Q Rev Biol. 1950 Jun;25(2):131–176. doi: 10.1086/397539. [DOI] [PubMed] [Google Scholar]
  3. Barker F. Keith, Lutzoni François M. The utility of the incongruence length difference test. Syst Biol. 2002 Aug;51(4):625–637. doi: 10.1080/10635150290102302. [DOI] [PubMed] [Google Scholar]
  4. Danley P. D., Kocher T. D. Speciation in rapidly diverging systems: lessons from Lake Malawi. Mol Ecol. 2001 May;10(5):1075–1086. doi: 10.1046/j.1365-294x.2001.01283.x. [DOI] [PubMed] [Google Scholar]
  5. DeSalle R. The origin and possible time of divergence of the Hawaiian Drosophilidae: evidence from DNA sequences. Mol Biol Evol. 1992 Sep;9(5):905–916. doi: 10.1093/oxfordjournals.molbev.a040767. [DOI] [PubMed] [Google Scholar]
  6. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294–299. [PubMed] [Google Scholar]
  7. Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
  8. Kyle C. J., Boulding E. G. Molecular genetic evidence for parallel evolution in a marine gastropod, Littorina subrotundata. Proc Biol Sci. 1998 Feb 22;265(1393):303–308. doi: 10.1098/rspb.1998.0296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sato A., Tichy H., O'hUigin C., Grant P. R., Grant B. R., Klein J. On the origin of Darwin's finches. Mol Biol Evol. 2001 Mar;18(3):299–311. doi: 10.1093/oxfordjournals.molbev.a003806. [DOI] [PubMed] [Google Scholar]
  10. Schluter D. Ecology and the origin of species. Trends Ecol Evol. 2001 Jul 1;16(7):372–380. doi: 10.1016/s0169-5347(01)02198-x. [DOI] [PubMed] [Google Scholar]
  11. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wilson Anthony B., Glaubrecht Matthias, Meyer Axel. Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika. Proc Biol Sci. 2004 Mar 7;271(1538):529–536. doi: 10.1098/rspb.2003.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES