Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Dec 22;271(1557):2587–2594. doi: 10.1098/rspb.2004.2886

Gastric flow and mixing studied using computer simulation.

Anupam Pal 1, Keshavamurthy Indireshkumar 1, Werner Schwizer 1, Bertil Abrahamsson 1, Michael Fried 1, James G Brasseur 1
PMCID: PMC1691895  PMID: 15615685

Abstract

The fed human stomach displays regular peristaltic contraction waves that originate in the proximal antrum and propagate to the pylorus. High-resolution concurrent manometry and magnetic resonance imaging (MRI) studies of the stomach suggest a primary function of antral contraction wave (ACW) activity unrelated to gastric emptying. Detailed evaluation is difficult, however, in vivo. Here we analyse the role of ACW activity on intragastric fluid motions, pressure, and mixing with computer simulation. A two-dimensional computer model of the stomach was developed with the 'lattice-Boltzmann' numerical method from the laws of physics, and stomach geometry modelled from MRI. Time changes in gastric volume were specified to match global physiological rates of nutrient liquid emptying. The simulations predicted two basic fluid motions: retrograde 'jets' through ACWs, and circulatory flow between ACWs, both of which contribute to mixing. A well-defined 'zone of mixing', confined to the antrum, was created by the ACWs, with mixing motions enhanced by multiple and narrower ACWs. The simulations also predicted contraction-induced peristaltic pressure waves in the distal antrum consistent with manometric measurements, but with a much lower pressure amplitude than manometric data, indicating that manometric pressure amplitudes reflect direct contact of the catheter with the gastric wall. We conclude that the ACWs are central to gastric mixing, and may also play an indirect role in gastric emptying through local alterations in common cavity pressure.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brasseur J. G., Dodds W. J. Interpretation of intraluminal manometric measurements in terms of swallowing mechanics. Dysphagia. 1991;6(2):100–119. doi: 10.1007/BF02493487. [DOI] [PubMed] [Google Scholar]
  2. Code C. F. New horizons in gastrointestinal physiology. Arch Fisiol. 1970 Oct 31;68(1):1–24. [PubMed] [Google Scholar]
  3. Faas H., Hebbard G. S., Feinle C., Kunz P., Brasseur J. G., Indireshkumar K., Dent J., Boesiger P., Thumshirn M., Fried M. Pressure-geometry relationship in the antroduodenal region in humans. Am J Physiol Gastrointest Liver Physiol. 2001 Nov;281(5):G1214–G1220. doi: 10.1152/ajpgi.2001.281.5.G1214. [DOI] [PubMed] [Google Scholar]
  4. Gilja O. H., Detmer P. R., Jong J. M., Leotta D. F., Li X. N., Beach K. W., Martin R., Strandness D. E., Jr Intragastric distribution and gastric emptying assessed by three-dimensional ultrasonography. Gastroenterology. 1997 Jul;113(1):38–49. doi: 10.1016/s0016-5085(97)70078-7. [DOI] [PubMed] [Google Scholar]
  5. Hausken T., Mundt M., Samsom M. Low antroduodenal pressure gradients are responsible for gastric emptying of a low-caloric liquid meal in humans. Neurogastroenterol Motil. 2002 Feb;14(1):97–105. doi: 10.1046/j.1365-2982.2002.00307.x. [DOI] [PubMed] [Google Scholar]
  6. Hausken T., Odegaard S., Matre K., Berstad A. Antroduodenal motility and movements of luminal contents studied by duplex sonography. Gastroenterology. 1992 May;102(5):1583–1590. doi: 10.1016/0016-5085(92)91717-i. [DOI] [PubMed] [Google Scholar]
  7. Horowitz M., Dent J., Fraser R., Sun W., Hebbard G. Role and integration of mechanisms controlling gastric emptying. Dig Dis Sci. 1994 Dec;39(12 Suppl):7S–13S. doi: 10.1007/BF02300360. [DOI] [PubMed] [Google Scholar]
  8. Indireshkumar K., Brasseur J. G., Faas H., Hebbard G. S., Kunz P., Dent J., Feinle C., Li M., Boesiger P., Fried M. Relative contributions of "pressure pump" and "peristaltic pump" to gastric emptying. Am J Physiol Gastrointest Liver Physiol. 2000 Apr;278(4):G604–G616. doi: 10.1152/ajpgi.2000.278.4.G604. [DOI] [PubMed] [Google Scholar]
  9. King P. M., Adam R. D., Pryde A., McDicken W. N., Heading R. C. Relationships of human antroduodenal motility and transpyloric fluid movement: non-invasive observations with real-time ultrasound. Gut. 1984 Dec;25(12):1384–1391. doi: 10.1136/gut.25.12.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li M., Brasseur J. G., Dodds W. J. Analyses of normal and abnormal esophageal transport using computer simulations. Am J Physiol. 1994 Apr;266(4 Pt 1):G525–G543. doi: 10.1152/ajpgi.1994.266.4.G525. [DOI] [PubMed] [Google Scholar]
  11. Meyer J. H., Elashoff J. D., Domeck M., Levy A., Jehn D., Hlinka M., Lake R., Graham L. S., Gu Y. G. Control of canine gastric emptying of fat by lipolytic products. Am J Physiol. 1994 Jun;266(6 Pt 1):G1017–G1035. doi: 10.1152/ajpgi.1994.266.6.G1017. [DOI] [PubMed] [Google Scholar]
  12. Pallotta N., Cicala M., Frandina C., Corazziari E. Antro-pyloric contractile patterns and transpyloric flow after meal ingestion in humans. Am J Gastroenterol. 1998 Dec;93(12):2513–2522. doi: 10.1111/j.1572-0241.1998.00598.x. [DOI] [PubMed] [Google Scholar]
  13. Schulze-Delrieu K., Brown C. K. Emptying of saline meals by the cat stomach as a function of pyloric resistance. Am J Physiol. 1985 Dec;249(6 Pt 1):G725–G732. doi: 10.1152/ajpgi.1985.249.6.G725. [DOI] [PubMed] [Google Scholar]
  14. Schwizer W., Maecke H., Fried M. Measurement of gastric emptying by magnetic resonance imaging in humans. Gastroenterology. 1992 Aug;103(2):369–376. doi: 10.1016/0016-5085(92)90823-h. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES