Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Dec 22;271(1557):2569–2577. doi: 10.1098/rspb.2004.2938

Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches.

Parviez R Hosseini 1, André A Dhondt 1, Andy Dobson 1
PMCID: PMC1691896  PMID: 15615682

Abstract

We examine the role of host seasonal breeding, host seasonal social aggregation and partial immunity in affecting wildlife disease dynamics, focusing on the dynamics of house finch conjunctivitis (Mycoplasma gallisepticum (MG) in Carpodacus mexicanus). This case study of an unmanaged emerging infectious disease provides useful insight into the important role of seasonal factors in driving ongoing disease dynamics. Seasonal breeding can force recurrent epidemics through the input of fresh susceptibles, which will clearly affect a wide variety of wildlife disease dynamics. Seasonal patterns of social aggregation and foraging behaviour could change transmission dynamics. We use latitudinal variation in the timing of breeding, and social systems to model seasonal dynamics of house finch conjunctivitis across eastern North America. We quantify the patterns of seasonal breeding, and social aggregation across a latitudinal gradient in the eastern range of the house finch, supplemented with known field and laboratory information on immunity to MG in finches. We then examine the interactions of these factors in a theoretical model of disease dynamics. We find that both forms of seasonality could explain the dynamics of the house finch-MG system, and that these factors could have important effects on the dynamics of wildlife diseases generally. In particular, while either alone is sufficient to create recurrent cycles of prevalence in a population with an endemic disease, both are required to produce the specific semi-annual pattern of disease prevalence seen in the house finch conjunctivitis system.

Full Text

The Full Text of this article is available as a PDF (191.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. M., May R. M. Population biology of infectious diseases: Part I. Nature. 1979 Aug 2;280(5721):361–367. doi: 10.1038/280361a0. [DOI] [PubMed] [Google Scholar]
  2. Bolker B. M., Grenfell B. T. Chaos and biological complexity in measles dynamics. Proc Biol Sci. 1993 Jan 22;251(1330):75–81. doi: 10.1098/rspb.1993.0011. [DOI] [PubMed] [Google Scholar]
  3. Daszak P., Cunningham A. A., Hyatt A. D. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science. 2000 Jan 21;287(5452):443–449. doi: 10.1126/science.287.5452.443. [DOI] [PubMed] [Google Scholar]
  4. Dhondt A. A., Tessaglia D. L., Slothower R. L. Epidemic mycoplasmal conjunctivitis in house finches from eastern North America. J Wildl Dis. 1998 Apr;34(2):265–280. doi: 10.7589/0090-3558-34.2.265. [DOI] [PubMed] [Google Scholar]
  5. Gremillion-Smith C., Woolf A. Epizootiology of skunk rabies in North America. J Wildl Dis. 1988 Oct;24(4):620–626. doi: 10.7589/0090-3558-24.4.620. [DOI] [PubMed] [Google Scholar]
  6. Harvell C. Drew, Mitchell Charles E., Ward Jessica R., Altizer Sonia, Dobson Andrew P., Ostfeld Richard S., Samuel Michael D. Climate warming and disease risks for terrestrial and marine biota. Science. 2002 Jun 21;296(5576):2158–2162. doi: 10.1126/science.1063699. [DOI] [PubMed] [Google Scholar]
  7. Hochachka W. M., Dhondt A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5303–5306. doi: 10.1073/pnas.080551197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keeling Matt J., Grenfell Bryan T. Understanding the persistence of measles: reconciling theory, simulation and observation. Proc Biol Sci. 2002 Feb 22;269(1489):335–343. doi: 10.1098/rspb.2001.1898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kollias George V., Sydenstricker Keila V., Kollias Heidi W., Ley David H., Hosseini Parviez R., Connolly Véronique, Dhondt André A. Experimental infection of house finches with Mycoplasma gallisepticum. J Wildl Dis. 2004 Jan;40(1):79–86. doi: 10.7589/0090-3558-40.1.79. [DOI] [PubMed] [Google Scholar]
  10. Ley D. H., Berkhoff J. E., McLaren J. M. Mycoplasma gallisepticum isolated from house finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis. 1996 Apr-Jun;40(2):480–483. [PubMed] [Google Scholar]
  11. Lloyd A. L. Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor Popul Biol. 2001 Aug;60(1):59–71. doi: 10.1006/tpbi.2001.1525. [DOI] [PubMed] [Google Scholar]
  12. Luttrell M. P., Fischer J. R., Stallknecht D. E., Kleven S. H. Field investigation of Mycoplasma gallisepticum infections in house finches (Carpodacus mexicanus) from Maryland and Georgia. Avian Dis. 1996 Apr-Jun;40(2):335–341. [PubMed] [Google Scholar]
  13. Møller Anders Pape, Erritzøe Johannes, Saino Nicola. Seasonal changes in immune response and parasite impact on hosts. Am Nat. 2003 Mar 28;161(4):657–671. doi: 10.1086/367879. [DOI] [PubMed] [Google Scholar]
  14. doi: 10.1098/rspb.1998.0541. [DOI] [PMC free article] [Google Scholar]
  15. Pascual Mercedes, Roy Manojit, Guichard Frédéric, Flierl Glenn. Cluster size distributions: signatures of self-organization in spatial ecologies. Philos Trans R Soc Lond B Biol Sci. 2002 May 29;357(1421):657–666. doi: 10.1098/rstb.2001.0983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts S. R., Nolan P. M., Lauerman L. H., Li L. Q., Hill G. E. Characterization of the mycoplasmal conjunctivitis epizootic in a house finch population in the southeastern USA. J Wildl Dis. 2001 Jan;37(1):82–88. doi: 10.7589/0090-3558-37.1.82. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES