Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Dec 22;271(1557):2551–2558. doi: 10.1098/rspb.2004.2864

Does a tree-like phylogeny only exist at the tips in the prokaryotes?

Christopher J Creevey 1, David A Fitzpatrick 1, Gayle K Philip 1, Rhoda J Kinsella 1, Mary J O'Connell 1, Melissa M Pentony 1, Simon A Travers 1, Mark Wilkinson 1, James O McInerney 1
PMCID: PMC1691901  PMID: 15615680

Abstract

The extent to which prokaryotic evolution has been influenced by horizontal gene transfer (HGT) and therefore might be more of a network than a tree is unclear. Here we use supertree methods to ask whether a definitive prokaryotic phylogenetic tree exists and whether it can be confidently inferred using orthologous genes. We analysed an 11-taxon dataset spanning the deepest divisions of prokaryotic relationships, a 10-taxon dataset spanning the relatively recent gamma-proteobacteria and a 61-taxon dataset spanning both, using species for which complete genomes are available. Congruence among gene trees spanning deep relationships is not better than random. By contrast, a strong, almost perfect phylogenetic signal exists in gamma-proteobacterial genes. Deep-level prokaryotic relationships are difficult to infer because of signal erosion, systematic bias, hidden paralogy and/or HGT. Our results do not preclude levels of HGT that would be inconsistent with the notion of a prokaryotic phylogeny. This approach will help decide the extent to which we can say that there is a prokaryotic phylogeny and where in the phylogeny a cohesive genomic signal exists.

Full Text

The Full Text of this article is available as a PDF (326.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asai T., Zaporojets D., Squires C., Squires C. L. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1971–1976. doi: 10.1073/pnas.96.5.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  4. Brown J. R. Genomic and phylogenetic perspectives on the evolution of prokaryotes. Syst Biol. 2001 Aug;50(4):497–512. doi: 10.1080/10635150117729. [DOI] [PubMed] [Google Scholar]
  5. Canbäck Björn, Tamas Ivica, Andersson Siv G. E. A phylogenomic study of endosymbiotic bacteria. Mol Biol Evol. 2004 Mar 10;21(6):1110–1122. doi: 10.1093/molbev/msh122. [DOI] [PubMed] [Google Scholar]
  6. Daubin V., Gouy M., Perrière G. Bacterial molecular phylogeny using supertree approach. Genome Inform. 2001;12:155–164. [PubMed] [Google Scholar]
  7. Hayashi T., Makino K., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C. G., Ohtsubo E., Nakayama K., Murata T. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001 Feb 28;8(1):11–22. doi: 10.1093/dnares/8.1.11. [DOI] [PubMed] [Google Scholar]
  8. Jain R., Rivera M. C., Lake J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801–3806. doi: 10.1073/pnas.96.7.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones D. T., Taylor W. R., Thornton J. M. A mutation data matrix for transmembrane proteins. FEBS Lett. 1994 Feb 21;339(3):269–275. doi: 10.1016/0014-5793(94)80429-x. [DOI] [PubMed] [Google Scholar]
  10. Kurland C. G., Canback B., Berg Otto G. Horizontal gene transfer: a critical view. Proc Natl Acad Sci U S A. 2003 Aug 5;100(17):9658–9662. doi: 10.1073/pnas.1632870100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lake James A., Rivera Maria C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol Biol Evol. 2004 Jan 22;21(4):681–690. doi: 10.1093/molbev/msh061. [DOI] [PubMed] [Google Scholar]
  12. Philippe H., Germot A. Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol. 2000 May;17(5):830–834. doi: 10.1093/oxfordjournals.molbev.a026362. [DOI] [PubMed] [Google Scholar]
  13. Pisani Davide, Yates Adam M., Langer Max C., Benton Michael J. A genus-level supertree of the Dinosauria. Proc Biol Sci. 2002 May 7;269(1494):915–921. doi: 10.1098/rspb.2001.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Purvis A. A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):405–421. doi: 10.1098/rstb.1995.0078. [DOI] [PubMed] [Google Scholar]
  15. Schmidt Heiko A., Strimmer Korbinian, Vingron Martin, von Haeseler Arndt. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002 Mar;18(3):502–504. doi: 10.1093/bioinformatics/18.3.502. [DOI] [PubMed] [Google Scholar]
  16. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Whelan S., Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001 May;18(5):691–699. doi: 10.1093/oxfordjournals.molbev.a003851. [DOI] [PubMed] [Google Scholar]
  18. Wilkinson M. Split support and split conflict randomization tests in phylogenetic inference. Syst Biol. 1998 Dec;47(4):673–695. doi: 10.1080/106351598260662. [DOI] [PubMed] [Google Scholar]
  19. Woese Carl R. On the evolution of cells. Proc Natl Acad Sci U S A. 2002 Jun 19;99(13):8742–8747. doi: 10.1073/pnas.132266999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES