Abstract
A parameter-free method is presented for the level detection in ion channel records via recovery of step wise current changes. No assumptions about ion channel mechanism are made. The primary detection of the transitions is made by statistical filtering the data using the Student's t-test. The event currents are calculated as the average value of the current between two adjacent transitions. An optimal ideal trace is found by maximization of a likelihood function. The distribution of event currents recovered from the raw data is then analysed, again by using the Student's t-test, for their grouping into separate statistical ensembles, defining current levels. The method is subjected to rigorous test using simulated data, and is compared with several other methods. It produces the levels of channel current, their noise amplitudes and distributions of dwell times, the desired information for constructing the channel mechanism.
Full Text
The Full Text of this article is available as a PDF (722.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker J. D., Honerkamp J., Hirsch J., Fröbe U., Schlatter E., Greger R. Analysing ion channels with hidden Markov models. Pflugers Arch. 1994 Feb;426(3-4):328–332. doi: 10.1007/BF00374789. [DOI] [PubMed] [Google Scholar]
- Chung S. H., Kennedy R. A. Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods. 1991 Nov;40(1):71–86. doi: 10.1016/0165-0270(91)90118-j. [DOI] [PubMed] [Google Scholar]
- Chung S. H., Moore J. B., Xia L. G., Premkumar L. S., Gage P. W. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models. Philos Trans R Soc Lond B Biol Sci. 1990 Sep 29;329(1254):265–285. doi: 10.1098/rstb.1990.0170. [DOI] [PubMed] [Google Scholar]
- Fox J. A. Ion channel subconductance states. J Membr Biol. 1987;97(1):1–8. doi: 10.1007/BF01869609. [DOI] [PubMed] [Google Scholar]
- Fredkin D. R., Rice J. A. Bayesian restoration of single-channel patch clamp recordings. Biometrics. 1992 Jun;48(2):427–448. [PubMed] [Google Scholar]
- Fredkin D. R., Rice J. A. Maximum likelihood estimation and identification directly from single-channel recordings. Proc Biol Sci. 1992 Aug 22;249(1325):125–132. doi: 10.1098/rspb.1992.0094. [DOI] [PubMed] [Google Scholar]
- French R. J., Wonderlin W. F. Software for acquisition and analysis of ion channel data: choices, tasks, and strategies. Methods Enzymol. 1992;207:711–728. doi: 10.1016/0076-6879(92)07052-p. [DOI] [PubMed] [Google Scholar]
- Heinemann S. H., Sigworth F. J. Open channel noise. VI. Analysis of amplitude histograms to determine rapid kinetic parameters. Biophys J. 1991 Sep;60(3):577–587. doi: 10.1016/S0006-3495(91)82087-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn R., Lange K. Estimating kinetic constants from single channel data. Biophys J. 1983 Aug;43(2):207–223. doi: 10.1016/S0006-3495(83)84341-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn R. Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys J. 1987 Feb;51(2):255–263. doi: 10.1016/S0006-3495(87)83331-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M. B. Ion channels. Single-channel analysis. Methods Enzymol. 1992;207:729–746. doi: 10.1016/0076-6879(92)07053-q. [DOI] [PubMed] [Google Scholar]
- Korn S. J., Horn R. Statistical discrimination of fractal and Markov models of single-channel gating. Biophys J. 1988 Nov;54(5):871–877. doi: 10.1016/S0006-3495(88)83023-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magleby K. L. Ion channels. Preventing artifacts and reducing errors in single-channel analysis. Methods Enzymol. 1992;207:763–791. doi: 10.1016/0076-6879(92)07055-s. [DOI] [PubMed] [Google Scholar]
- Magleby K. L., Weiss D. S. Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise. Biophys J. 1990 Dec;58(6):1411–1426. doi: 10.1016/S0006-3495(90)82487-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magleby K. L., Weiss D. S. Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times. Proc Biol Sci. 1990 Sep 22;241(1302):220–228. doi: 10.1098/rspb.1990.0089. [DOI] [PubMed] [Google Scholar]
- Moghaddamjoo A. Automatic segmentation and classification of ionic-channel signals. IEEE Trans Biomed Eng. 1991 Feb;38(2):149–155. doi: 10.1109/10.76380. [DOI] [PubMed] [Google Scholar]
- Patlak J. B. Sodium channel subconductance levels measured with a new variance-mean analysis. J Gen Physiol. 1988 Oct;92(4):413–430. doi: 10.1085/jgp.92.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petracchi D., Barbi M., Pellegrini M., Pellegrino M., Simoni A. Use of conditioned distributions in the analysis of ion channel recordings. Eur Biophys J. 1991;20(1):31–39. doi: 10.1007/BF00183277. [DOI] [PubMed] [Google Scholar]
- Qin F., Auerbach A., Sachs F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J. 1996 Jan;70(1):264–280. doi: 10.1016/S0006-3495(96)79568-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultze R., Draber S. A nonlinear filter algorithm for the detection of jumps in patch-clamp data. J Membr Biol. 1993 Feb;132(1):41–52. doi: 10.1007/BF00233050. [DOI] [PubMed] [Google Scholar]
- Tyerman S. D., Terry B. R., Findlay G. P. Multiple conductances in the large K+ channel from Chara corallina shown by a transient analysis method. Biophys J. 1992 Mar;61(3):736–749. doi: 10.1016/S0006-3495(92)81878-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanDongen A. M. A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels. Biophys J. 1996 Mar;70(3):1303–1315. doi: 10.1016/S0006-3495(96)79687-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
