Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Jun 29;352(1354):661–668. doi: 10.1098/rstb.1997.0047

Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration.

B J Tromberg 1, O Coquoz 1, J B Fishkin 1, T Pham 1, E R Anderson 1, J Butler 1, M Cahn 1, J D Gross 1, V Venugopalan 1, D Pham 1
PMCID: PMC1691955  PMID: 9232853

Abstract

A multiwavelength, high bandwidth (1 GHz) frequency-domain photon migration (FDPM) instrument has been developed for quantitative, non-invasive measurements of tissue optical and physiological properties. The instrument produces 300 kHz to 1 GHz photon density waves (PDWs) in optically turbid media using a network analyser, an avalanche photodiode detector and four amplitude-modulated diode lasers (674 nm, 811 nm, 849 nm, and 956 nm). The frequency of PDW phase and amplitude is measured and compared to analytically derived model functions in order to calculate absorption, mu a, and reduced scattering, mu s, parameters. The wavelength-dependence of absorption is used to determine tissue haemoglobin concentration (total, oxy- and deoxy- forms), oxygen saturation and water concentration. We present preliminary results of non-invasive FDPM measurements obtained from normal and tumour-containing human breast tissue. Our data clearly demonstrate that physiological changes caused by the presence of small (about 1 cm diameter) palpable lesions can be detected using a handheld FDPM probe.

Full Text

The Full Text of this article is available as a PDF (570.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arridge S. R., Cope M., Delpy D. T. The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys Med Biol. 1992 Jul;37(7):1531–1560. doi: 10.1088/0031-9155/37/7/005. [DOI] [PubMed] [Google Scholar]
  2. Beam C. A., Layde P. M., Sullivan D. C. Variability in the interpretation of screening mammograms by US radiologists. Findings from a national sample. Arch Intern Med. 1996 Jan 22;156(2):209–213. [PubMed] [Google Scholar]
  3. Bird R. E., Wallace T. W., Yankaskas B. C. Analysis of cancers missed at screening mammography. Radiology. 1992 Sep;184(3):613–617. doi: 10.1148/radiology.184.3.1509041. [DOI] [PubMed] [Google Scholar]
  4. Boas DA, O'Leary MA, Chance B, Yodh AG. Scattering and wavelength transduction of diffuse photon density waves. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 May;47(5):R2999–R3002. doi: 10.1103/physreve.47.r2999. [DOI] [PubMed] [Google Scholar]
  5. Fishkin J. B., Gratton E. Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge. J Opt Soc Am A. 1993 Jan;10(1):127–140. doi: 10.1364/josaa.10.000127. [DOI] [PubMed] [Google Scholar]
  6. Fishkin JB, Fantini S, vandeVen MJ, Gratton E. Gigahertz photon density waves in a turbid medium: Theory and experiments. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Mar;53(3):2307–2319. doi: 10.1103/physreve.53.2307. [DOI] [PubMed] [Google Scholar]
  7. Haskell R. C., Svaasand L. O., Tsay T. T., Feng T. C., McAdams M. S., Tromberg B. J. Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am A Opt Image Sci Vis. 1994 Oct;11(10):2727–2741. doi: 10.1364/josaa.11.002727. [DOI] [PubMed] [Google Scholar]
  8. Joensuu H., Asola R., Holli K., Kumpulainen E., Nikkanen V., Parvinen L. M. Delayed diagnosis and large size of breast cancer after a false negative mammogram. Eur J Cancer. 1994;30A(9):1299–1302. doi: 10.1016/0959-8049(94)90177-5. [DOI] [PubMed] [Google Scholar]
  9. Kerlikowske K., Grady D., Barclay J., Sickles E. A., Ernster V. Effect of age, breast density, and family history on the sensitivity of first screening mammography. JAMA. 1996 Jul 3;276(1):33–38. [PubMed] [Google Scholar]
  10. Laya M. B., Larson E. B., Taplin S. H., White E. Effect of estrogen replacement therapy on the specificity and sensitivity of screening mammography. J Natl Cancer Inst. 1996 May 15;88(10):643–649. doi: 10.1093/jnci/88.10.643. [DOI] [PubMed] [Google Scholar]
  11. Madsen S. J., Wyss P., Svaasand L. O., Haskell R. C., Tadir Y., Tromberg B. J. Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques. Phys Med Biol. 1994 Aug;39(8):1191–1202. doi: 10.1088/0031-9155/39/8/001. [DOI] [PubMed] [Google Scholar]
  12. O'Leary MA, Boas DA, Chance B, Yodh AG. Refraction of diffuse photon density waves. Phys Rev Lett. 1992 Nov 2;69(18):2658–2661. doi: 10.1103/PhysRevLett.69.2658. [DOI] [PubMed] [Google Scholar]
  13. Peters V. G., Wyman D. R., Patterson M. S., Frank G. L. Optical properties of normal and diseased human breast tissues in the visible and near infrared. Phys Med Biol. 1990 Sep;35(9):1317–1334. doi: 10.1088/0031-9155/35/9/010. [DOI] [PubMed] [Google Scholar]
  14. Pogue B. W., Patterson M. S. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory. Phys Med Biol. 1994 Jul;39(7):1157–1180. doi: 10.1088/0031-9155/39/7/008. [DOI] [PubMed] [Google Scholar]
  15. Sevick E. M., Chance B., Leigh J., Nioka S., Maris M. Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation. Anal Biochem. 1991 Jun;195(2):330–351. doi: 10.1016/0003-2697(91)90339-u. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES