Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Jun 29;352(1354):677–683. doi: 10.1098/rstb.1997.0049

Oxidative metabolism in muscle.

M Ferrari 1, T Binzoni 1, V Quaresima 1
PMCID: PMC1691965  PMID: 9232855

Abstract

Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantages and problems of near-infrared spectroscopy measurements, in resting and exercising skeletal muscles studies, are discussed through some representative examples.

Full Text

The Full Text of this article is available as a PDF (359.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bank W., Chance B. An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann Neurol. 1994 Dec;36(6):830–837. doi: 10.1002/ana.410360606. [DOI] [PubMed] [Google Scholar]
  2. Belardinelli R., Barstow T. J., Porszasz J., Wasserman K. Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. Eur J Appl Physiol Occup Physiol. 1995;70(6):487–492. doi: 10.1007/BF00634377. [DOI] [PubMed] [Google Scholar]
  3. Belardinelli R., Barstow T. J., Porszasz J., Wasserman K. Skeletal muscle oxygenation during constant work rate exercise. Med Sci Sports Exerc. 1995 Apr;27(4):512–519. [PubMed] [Google Scholar]
  4. Belardinelli R., Georgiou D., Barstow T. J. Near infrared spectroscopy and changes in skeletal muscle oxygenation during incremental exercise in chronic heart failure: a comparison with healthy subjects. G Ital Cardiol. 1995 Jun;25(6):715–724. [PubMed] [Google Scholar]
  5. Chance B., Bank W. Genetic disease of mitochondrial function evaluated by NMR and NIR spectroscopy of skeletal tissue. Biochim Biophys Acta. 1995 May 24;1271(1):7–14. doi: 10.1016/0925-4439(95)00003-m. [DOI] [PubMed] [Google Scholar]
  6. Chance B., Borer E., Evans A., Holtom G., Kent J., Maris M., McCully K., Northrop J., Shinkwin M. Optical and nuclear magnetic resonance studies of hypoxia in human tissue and tumors. Ann N Y Acad Sci. 1988;551:1–16. doi: 10.1111/j.1749-6632.1988.tb22316.x. [DOI] [PubMed] [Google Scholar]
  7. Chance B., Dait M. T., Zhang C., Hamaoka T., Hagerman F. Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am J Physiol. 1992 Mar;262(3 Pt 1):C766–C775. doi: 10.1152/ajpcell.1992.262.3.C766. [DOI] [PubMed] [Google Scholar]
  8. Chance B., Nioka S., Kent J., McCully K., Fountain M., Greenfeld R., Holtom G. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem. 1988 Nov 1;174(2):698–707. doi: 10.1016/0003-2697(88)90076-0. [DOI] [PubMed] [Google Scholar]
  9. Cheatle T. R., Potter L. A., Cope M., Delpy D. T., Coleridge Smith P. D., Scurr J. H. Near-infrared spectroscopy in peripheral vascular disease. Br J Surg. 1991 Apr;78(4):405–408. doi: 10.1002/bjs.1800780408. [DOI] [PubMed] [Google Scholar]
  10. Conway J. M., Norris K. H., Bodwell C. E. A new approach for the estimation of body composition: infrared interactance. Am J Clin Nutr. 1984 Dec;40(6):1123–1130. doi: 10.1093/ajcn/40.6.1123. [DOI] [PubMed] [Google Scholar]
  11. Cope M., Delpy D. T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988 May;26(3):289–294. doi: 10.1007/BF02447083. [DOI] [PubMed] [Google Scholar]
  12. Costes F., Barthélémy J. C., Féasson L., Busso T., Geyssant A., Denis C. Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans. J Appl Physiol (1985) 1996 Apr;80(4):1345–1350. doi: 10.1152/jappl.1996.80.4.1345. [DOI] [PubMed] [Google Scholar]
  13. De Blasi R. A., Cope M., Elwell C., Safoue F., Ferrari M. Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy. Eur J Appl Physiol Occup Physiol. 1993;67(1):20–25. doi: 10.1007/BF00377698. [DOI] [PubMed] [Google Scholar]
  14. De Blasi R. A., Fantini S., Franceschini M. A., Ferrari M., Gratton E. Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer. Med Biol Eng Comput. 1995 Mar;33(2):228–230. doi: 10.1007/BF02523048. [DOI] [PubMed] [Google Scholar]
  15. De Blasi R. A., Ferrari M., Natali A., Conti G., Mega A., Gasparetto A. Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J Appl Physiol (1985) 1994 Mar;76(3):1388–1393. doi: 10.1152/jappl.1994.76.3.1388. [DOI] [PubMed] [Google Scholar]
  16. De Blasi R. A., Sfareni R., Pietranico B., Mega A. M., Ferrari M. Non invasive measurement of brachioradial muscle VO2-blood flow relationship during graded isometric exercise. Adv Exp Med Biol. 1996;388:293–298. doi: 10.1007/978-1-4613-0333-6_37. [DOI] [PubMed] [Google Scholar]
  17. Duncan A., Meek J. H., Clemence M., Elwell C. E., Tyszczuk L., Cope M., Delpy D. T. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol. 1995 Feb;40(2):295–304. doi: 10.1088/0031-9155/40/2/007. [DOI] [PubMed] [Google Scholar]
  18. Edwards A. D., Richardson C., van der Zee P., Elwell C., Wyatt J. S., Cope M., Delpy D. T., Reynolds E. O. Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy. J Appl Physiol (1985) 1993 Oct;75(4):1884–1889. doi: 10.1152/jappl.1993.75.4.1884. [DOI] [PubMed] [Google Scholar]
  19. Ferrari M., Wei Q., Carraresi L., De Blasi R. A., Zaccanti G. Time-resolved spectroscopy of the human forearm. J Photochem Photobiol B. 1992 Oct 30;16(2):141–153. doi: 10.1016/1011-1344(92)80005-g. [DOI] [PubMed] [Google Scholar]
  20. Giannini I., Ferrari M., Carpi A., Fasella P. Rat brain monitoring by near-infrared spectroscopy: an assessment of possible clinical significance. Physiol Chem Phys. 1982;14(3):295–305. [PubMed] [Google Scholar]
  21. Hampson N. B., Piantadosi C. A. Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia. J Appl Physiol (1985) 1988 Jun;64(6):2449–2457. doi: 10.1152/jappl.1988.64.6.2449. [DOI] [PubMed] [Google Scholar]
  22. Hansen J., Thomas G. D., Harris S. A., Parsons W. J., Victor R. G. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest. 1996 Jul 15;98(2):584–596. doi: 10.1172/JCI118826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jensen-Urstad M., Hallbäck I., Sahlin K. Effect of hypoxia on muscle oxygenation and metabolism during arm exercise in humans. Clin Physiol. 1995 Jan;15(1):27–37. doi: 10.1111/j.1475-097x.1995.tb00427.x. [DOI] [PubMed] [Google Scholar]
  24. Kemp G. J., Thompson C. H., Barnes P. R., Radda G. K. Comparisons of ATP turnover in human muscle during ischemic and aerobic exercise using 31P magnetic resonance spectroscopy. Magn Reson Med. 1994 Mar;31(3):248–258. doi: 10.1002/mrm.1910310303. [DOI] [PubMed] [Google Scholar]
  25. Komiyama T., Shigematsu H., Yasuhara H., Muto T. An objective assessment of intermittent claudication by near-infrared spectroscopy. Eur J Vasc Surg. 1994 May;8(3):294–296. doi: 10.1016/s0950-821x(05)80144-6. [DOI] [PubMed] [Google Scholar]
  26. Mancini D. M., Bolinger L., Li H., Kendrick K., Chance B., Wilson J. R. Validation of near-infrared spectroscopy in humans. J Appl Physiol (1985) 1994 Dec;77(6):2740–2747. doi: 10.1152/jappl.1994.77.6.2740. [DOI] [PubMed] [Google Scholar]
  27. Mancini D. M., Ferraro N., Nazzaro D., Chance B., Wilson J. R. Respiratory muscle deoxygenation during exercise in patients with heart failure demonstrated with near-infrared spectroscopy. J Am Coll Cardiol. 1991 Aug;18(2):492–498. doi: 10.1016/0735-1097(91)90605-9. [DOI] [PubMed] [Google Scholar]
  28. Mancini D. M., Henson D., LaManca J., Levine S. Evidence of reduced respiratory muscle endurance in patients with heart failure. J Am Coll Cardiol. 1994 Oct;24(4):972–981. doi: 10.1016/0735-1097(94)90858-3. [DOI] [PubMed] [Google Scholar]
  29. Mancini D. M., La Manca J., Donchez L., Henson D., Levine S. The sensation of dyspnea during exercise is not determined by the work of breathing in patients with heart failure. J Am Coll Cardiol. 1996 Aug;28(2):391–395. doi: 10.1016/0735-1097(96)00134-9. [DOI] [PubMed] [Google Scholar]
  30. Mancini D. M., LaManca J. J., Donchez L. J., Levine S., Henson D. J. Diminished respiratory muscle endurance persists after cardiac transplantation. Am J Cardiol. 1995 Feb 15;75(5):418–421. doi: 10.1016/s0002-9149(99)80571-2. [DOI] [PubMed] [Google Scholar]
  31. Mancini D. M., Wilson J. R., Bolinger L., Li H., Kendrick K., Chance B., Leigh J. S. In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure. Demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation. 1994 Jul;90(1):500–508. doi: 10.1161/01.cir.90.1.500. [DOI] [PubMed] [Google Scholar]
  32. Matcher S. J., Elwell C. E., Cooper C. E., Cope M., Delpy D. T. Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem. 1995 May 1;227(1):54–68. doi: 10.1006/abio.1995.1252. [DOI] [PubMed] [Google Scholar]
  33. Matsui S., Tamura N., Hirakawa T., Kobayashi S., Takekoshi N., Murakami E. Assessment of working skeletal muscle oxygenation in patients with chronic heart failure. Am Heart J. 1995 Apr;129(4):690–695. doi: 10.1016/0002-8703(95)90317-8. [DOI] [PubMed] [Google Scholar]
  34. McCully K. K., Halber C., Posner J. D. Exercise-induced changes in oxygen saturation in the calf muscles of elderly subjects with peripheral vascular disease. J Gerontol. 1994 May;49(3):B128–B134. doi: 10.1093/geronj/49.3.b128. [DOI] [PubMed] [Google Scholar]
  35. McCully K. K., Iotti S., Kendrick K., Wang Z., Posner J. D., Leigh J., Jr, Chance B. Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol (1985) 1994 Jul;77(1):5–10. doi: 10.1152/jappl.1994.77.1.5. [DOI] [PubMed] [Google Scholar]
  36. McCully K. K., Posner J. D. The application of blood flow measurements to the study of aging muscle. J Gerontol A Biol Sci Med Sci. 1995 Nov;50(Spec No):130–136. doi: 10.1093/gerona/50a.special_issue.130. [DOI] [PubMed] [Google Scholar]
  37. Quaresima V., De Blasi R. A., Ferrari M. Customised optrode holder for clinical near-infra-red spectroscopy measurements. Med Biol Eng Comput. 1995 Jul;33(4):627–628. doi: 10.1007/BF02522526. [DOI] [PubMed] [Google Scholar]
  38. Quaresima V., Pizzi A., De Blasi R. A., Ferrari A., Ferrari M. Influence of the treadmill speed/slope on quadriceps oxygenation during dynamic exercise. Adv Exp Med Biol. 1996;388:231–235. doi: 10.1007/978-1-4613-0333-6_29. [DOI] [PubMed] [Google Scholar]
  39. Seiyama A., Hazeki O., Tamura M. Noninvasive quantitative analysis of blood oxygenation in rat skeletal muscle. J Biochem. 1988 Mar;103(3):419–424. doi: 10.1093/oxfordjournals.jbchem.a122285. [DOI] [PubMed] [Google Scholar]
  40. Shiga T., Tanabe K., Nakase Y., Shida T., Chance B. Development of a portable tissue oximeter using near infra-red spectroscopy. Med Biol Eng Comput. 1995 Jul;33(4):622–626. doi: 10.1007/BF02522525. [DOI] [PubMed] [Google Scholar]
  41. Takada M., Tamura T., Tamura M. Non-invasive near-infrared measurements of human arm tissues in vivo. Adv Exp Med Biol. 1987;215:301–304. doi: 10.1007/978-1-4684-7433-6_34. [DOI] [PubMed] [Google Scholar]
  42. Tamaki T., Uchiyama S., Tamura T., Nakano S. Changes in muscle oxygenation during weight-lifting exercise. Eur J Appl Physiol Occup Physiol. 1994;68(6):465–469. doi: 10.1007/BF00599514. [DOI] [PubMed] [Google Scholar]
  43. Thompson C. H., Macaulay V. M., O'Byrne K. J., Kemp G. J., Wilner S. M., Talbot D. C., Harris A. L., Radda G. K. Modulation of bryostatin 1 muscle toxicity by nifedipine: effects on muscle metabolism and oxygen supply. Br J Cancer. 1996 May;73(10):1161–1165. doi: 10.1038/bjc.1996.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang Z. Y., Noyszewski E. A., Leigh J. S., Jr In vivo MRS measurement of deoxymyoglobin in human forearms. Magn Reson Med. 1990 Jun;14(3):562–567. doi: 10.1002/mrm.1910140314. [DOI] [PubMed] [Google Scholar]
  45. Wilson J. R., Mancini D. M., McCully K., Ferraro N., Lanoce V., Chance B. Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation. 1989 Dec;80(6):1668–1674. doi: 10.1161/01.cir.80.6.1668. [DOI] [PubMed] [Google Scholar]
  46. Wittenberg B. A., Wittenberg J. B. Transport of oxygen in muscle. Annu Rev Physiol. 1989;51:857–878. doi: 10.1146/annurev.ph.51.030189.004233. [DOI] [PubMed] [Google Scholar]
  47. Yoxall C. W., Weindling A. M. The measurement of peripheral venous oxyhemoglobin saturation in newborn infants by near infrared spectroscopy with venous occlusion. Pediatr Res. 1996 Jun;39(6):1103–1106. doi: 10.1203/00006450-199606000-00028. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES