Abstract
Perception arises through an interaction between sensory input and prior knowledge. We propose that at least two brain areas are required for such an interaction: the 'site' where analysis of afferent signals occurs and the 'source' which applies the relevant prior knowledge. In the human brain, functional imaging studies have demonstrated that selective attention modifies activity in early visual processing areas specific to the attended feature. Early processing areas are also modified when prior knowledge permits a percept to emerge from an otherwise meaningless stimulus. Sources of this modification have been identified in parietal cortex and in prefrontal cortex. Modification of early processing areas also occurs on the basis of prior knowledge about the predicted sensory effects of the subject's own actions. Activity associated with mental imagery resembles that associated with response preparation (for motor imagery) and selective attention (for sensory imagery) suggesting that mental imagery reflects the effects of prior knowledge on sensory processing areas in the absence of sensory input. Damage to sensory processing areas can lead to a form of sensory hallucination which seems to arise from the interaction of prior knowledge with random sensory activity. In contrast, hallucinations associated with schizophrenia may arise from a failure of prior knowledge about motor intentions to modify activity in relevant sensory areas. When functioning normally, this mechanism permits us to distinguish our own actions from those of independent agents in the outside world. Failure to make this distinction correctly may account for the strong association between hallucinations and paranoid delusions in schizophrenia; the patient not only hears voices, but attributes (usually hostile) intentions to these voices.
Full Text
The Full Text of this article is available as a PDF (200.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CRITCHLEY M. Types of visual perseveration: "paliopsia" and "illusory visual spread". Brain. 1951 Sep;74(3):267–299. doi: 10.1093/brain/74.3.267. [DOI] [PubMed] [Google Scholar]
- Cahill C. Psychotic experiences induced in deluded patients using distorted auditory feedback. Cogn Neuropsychiatry. 1996 Aug 1;1(3):201–211. doi: 10.1080/135468096396505. [DOI] [PubMed] [Google Scholar]
- Cavada C., Goldman-Rakic P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol. 1989 Sep 22;287(4):393–421. doi: 10.1002/cne.902870402. [DOI] [PubMed] [Google Scholar]
- Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., Petersen S. E. Attentional modulation of neural processing of shape, color, and velocity in humans. Science. 1990 Jun 22;248(4962):1556–1559. doi: 10.1126/science.2360050. [DOI] [PubMed] [Google Scholar]
- Creutzfeldt O., Ojemann G., Lettich E. Neuronal activity in the human lateral temporal lobe. II. Responses to the subjects own voice. Exp Brain Res. 1989;77(3):476–489. doi: 10.1007/BF00249601. [DOI] [PubMed] [Google Scholar]
- Fink G. R., Halligan P. W., Marshall J. C., Frith C. D., Frackowiak R. S., Dolan R. J. Where in the brain does visual attention select the forest and the trees? Nature. 1996 Aug 15;382(6592):626–628. doi: 10.1038/382626a0. [DOI] [PubMed] [Google Scholar]
- Fletcher P. C., Frith C. D., Baker S. C., Shallice T., Frackowiak R. S., Dolan R. J. The mind's eye--precuneus activation in memory-related imagery. Neuroimage. 1995 Sep;2(3):195–200. doi: 10.1006/nimg.1995.1025. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Frith C. D. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97. [PubMed] [Google Scholar]
- Frith C. D., Done D. J. Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. Psychol Med. 1989 May;19(2):359–363. doi: 10.1017/s003329170001240x. [DOI] [PubMed] [Google Scholar]
- Frith C. D., Friston K. J. The role of the thalamus in "top down" modulation of attention to sound. Neuroimage. 1996 Dec;4(3 Pt 1):210–215. doi: 10.1006/nimg.1996.0072. [DOI] [PubMed] [Google Scholar]
- Frith C. The role of the prefrontal cortex in self-consciousness: the case of auditory hallucinations. Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1505–1512. doi: 10.1098/rstb.1996.0136. [DOI] [PubMed] [Google Scholar]
- Gregory R. L. What do qualia do? Perception. 1996;25(4):377–379. doi: 10.1068/p250377. [DOI] [PubMed] [Google Scholar]
- Haxby J. V., Grady C. L., Horwitz B., Ungerleider L. G., Mishkin M., Carson R. E., Herscovitch P., Schapiro M. B., Rapoport S. I. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1621–1625. doi: 10.1073/pnas.88.5.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haxby J. V., Horwitz B., Ungerleider L. G., Maisog J. M., Pietrini P., Grady C. L. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci. 1994 Nov;14(11 Pt 1):6336–6353. doi: 10.1523/JNEUROSCI.14-11-06336.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lance J. W. Simple formed hallucinations confined to the area of a specific visual field defect. Brain. 1976 Dec;99(4):719–734. doi: 10.1093/brain/99.4.719. [DOI] [PubMed] [Google Scholar]
- Martin A., Haxby J. V., Lalonde F. M., Wiggs C. L., Ungerleider L. G. Discrete cortical regions associated with knowledge of color and knowledge of action. Science. 1995 Oct 6;270(5233):102–105. doi: 10.1126/science.270.5233.102. [DOI] [PubMed] [Google Scholar]
- McGuire P. K., Shah G. M., Murray R. M. Increased blood flow in Broca's area during auditory hallucinations in schizophrenia. Lancet. 1993 Sep 18;342(8873):703–706. doi: 10.1016/0140-6736(93)91707-s. [DOI] [PubMed] [Google Scholar]
- McGuire P. K., Silbersweig D. A., Murray R. M., David A. S., Frackowiak R. S., Frith C. D. Functional anatomy of inner speech and auditory verbal imagery. Psychol Med. 1996 Jan;26(1):29–38. doi: 10.1017/s0033291700033699. [DOI] [PubMed] [Google Scholar]
- Mlakar J., Jensterle J., Frith C. D. Central monitoring deficiency and schizophrenic symptoms. Psychol Med. 1994 Aug;24(3):557–564. doi: 10.1017/s0033291700027719. [DOI] [PubMed] [Google Scholar]
- Noda S., Mizoguchi M., Yamamoto A. Thalamic experiential hallucinosis. J Neurol Neurosurg Psychiatry. 1993 Nov;56(11):1224–1226. doi: 10.1136/jnnp.56.11.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paus T., Marrett S., Worsley K., Evans A. Imaging motor-to-sensory discharges in the human brain: an experimental tool for the assessment of functional connectivity. Neuroimage. 1996 Oct;4(2):78–86. doi: 10.1006/nimg.1996.0031. [DOI] [PubMed] [Google Scholar]
- Petrides M., Pandya D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol. 1984 Sep 1;228(1):105–116. doi: 10.1002/cne.902280110. [DOI] [PubMed] [Google Scholar]
- Price C., Wise R., Ramsay S., Friston K., Howard D., Patterson K., Frackowiak R. Regional response differences within the human auditory cortex when listening to words. Neurosci Lett. 1992 Nov 9;146(2):179–182. doi: 10.1016/0304-3940(92)90072-f. [DOI] [PubMed] [Google Scholar]
- Rees G., Frackowiak R., Frith C. Two modulatory effects of attention that mediate object categorization in human cortex. Science. 1997 Feb 7;275(5301):835–838. doi: 10.1126/science.275.5301.835. [DOI] [PubMed] [Google Scholar]
- Robertson L. C., Lamb M. R. Neuropsychological contributions to theories of part/whole organization. Cogn Psychol. 1991 Apr;23(2):299–330. doi: 10.1016/0010-0285(91)90012-d. [DOI] [PubMed] [Google Scholar]
- Rushton D. N., Rothwell J. C., Craggs M. D. Gating of somatosensory evoked potentials during different kinds of movement in man. Brain. 1981 Sep;104(3):465–491. doi: 10.1093/brain/104.3.465. [DOI] [PubMed] [Google Scholar]
- Sergent J., Ohta S., MacDonald B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain. 1992 Feb;115(Pt 1):15–36. doi: 10.1093/brain/115.1.15. [DOI] [PubMed] [Google Scholar]
- Silbersweig D. A., Stern E., Frith C., Cahill C., Holmes A., Grootoonk S., Seaward J., McKenna P., Chua S. E., Schnorr L. A functional neuroanatomy of hallucinations in schizophrenia. Nature. 1995 Nov 9;378(6553):176–179. doi: 10.1038/378176a0. [DOI] [PubMed] [Google Scholar]
- Stephan K. M., Fink G. R., Passingham R. E., Silbersweig D., Ceballos-Baumann A. O., Frith C. D., Frackowiak R. S. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol. 1995 Jan;73(1):373–386. doi: 10.1152/jn.1995.73.1.373. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Hikosaka K., Saito H., Yukie M., Fukada Y., Iwai E. Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci. 1986 Jan;6(1):134–144. doi: 10.1523/JNEUROSCI.06-01-00134.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varney N. R., Digre K. Color "amnesia" without aphasia. Cortex. 1983 Dec;19(4):545–550. doi: 10.1016/s0010-9452(83)80035-5. [DOI] [PubMed] [Google Scholar]
- Wenzel R., Bartenstein P., Dieterich M., Danek A., Weindl A., Minoshima S., Ziegler S., Schwaiger M., Brandt T. Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain. 1996 Feb;119(Pt 1):101–110. doi: 10.1093/brain/119.1.101. [DOI] [PubMed] [Google Scholar]
- Wolpert D. M., Ghahramani Z., Jordan M. I. An internal model for sensorimotor integration. Science. 1995 Sep 29;269(5232):1880–1882. doi: 10.1126/science.7569931. [DOI] [PubMed] [Google Scholar]
- Zeki S. Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience. 1983 Aug;9(4):741–765. doi: 10.1016/0306-4522(83)90265-8. [DOI] [PubMed] [Google Scholar]
- Zeki S., Watson J. D., Lueck C. J., Friston K. J., Kennard C., Frackowiak R. S. A direct demonstration of functional specialization in human visual cortex. J Neurosci. 1991 Mar;11(3):641–649. doi: 10.1523/JNEUROSCI.11-03-00641.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]