Abstract
A number of behavioural phenomena distinguish the recognition of faces and objects, even when members of a set of objects are highly similar. Because faces have the same parts in approximately the same relations, individuation of faces typically requires specification of the metric variation in a holistic and integral representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a representation layer that preserves relative spatial filter values in a two-dimensional (2D) coordinate space, as proposed by C. von der Malsburg and his associates, may account for many of the phenomena associated with face recognition. An additional refinement, in which each column of filters (termed a 'jet') is centred on a particular facial feature (or fiducial point), allows selectivity of the input into the holistic representation to avoid incorporation of occluding or nearby surfaces. The initial hypercolumn representation also characterizes the first stage of object perception, but the image variation for objects at a given location in a 2D coordinate space may be too great to yield sufficient predictability directly from the output of spatial kernels. Consequently, objects can be represented by a structural description specifying qualitative (typically, non-accidental) characterizations of an object's parts, the attributes of the parts, and the relations among the parts, largely based on orientation and depth discontinuities (as shown by Hummel & Biederman). A series of experiments on the name priming or physical matching of complementary images (in the Fourier domain) of objects and faces documents that whereas face recognition is strongly dependent on the original spatial filter values, evidence from object recognition indicates strong invariance to these values, even when distinguishing among objects that are as similar as faces.
Full Text
The Full Text of this article is available as a PDF (457.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baylis G. C., Rolls E. T., Leonard C. M. Functional subdivisions of the temporal lobe neocortex. J Neurosci. 1987 Feb;7(2):330–342. doi: 10.1523/JNEUROSCI.07-02-00330.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behrmann M., Winocur G., Moscovitch M. Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature. 1992 Oct 15;359(6396):636–637. doi: 10.1038/359636a0. [DOI] [PubMed] [Google Scholar]
- Biederman I., Cooper E. E. Priming contour-deleted images: evidence for intermediate representations in visual object recognition. Cogn Psychol. 1991 Jul;23(3):393–419. doi: 10.1016/0010-0285(91)90014-f. [DOI] [PubMed] [Google Scholar]
- Biederman I., Gerhardstein P. C., Cooper E. E., Nelson C. A. High level object recognition without an anterior inferior temporal lobe. Neuropsychologia. 1997 Mar;35(3):271–287. doi: 10.1016/s0028-3932(96)00075-9. [DOI] [PubMed] [Google Scholar]
- Biederman I., Gerhardstein P. C. Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. J Exp Psychol Hum Percept Perform. 1993 Dec;19(6):1162–1182. doi: 10.1037//0096-1523.19.6.1162. [DOI] [PubMed] [Google Scholar]
- Biederman I. Recognition-by-components: a theory of human image understanding. Psychol Rev. 1987 Apr;94(2):115–147. doi: 10.1037/0033-295X.94.2.115. [DOI] [PubMed] [Google Scholar]
- Carey S. Becoming a face expert. Philos Trans R Soc Lond B Biol Sci. 1992 Jan 29;335(1273):95–103. doi: 10.1098/rstb.1992.0012. [DOI] [PubMed] [Google Scholar]
- Fiser J., Biederman I., Cooper E. E. To what extent can matching algorithms based on direct outputs of spatial filters account for human object recognition? Spat Vis. 1996;10(3):237–271. doi: 10.1163/156856896x00150. [DOI] [PubMed] [Google Scholar]
- Hosie J. A., Ellis H. D., Haig N. D. The effect of feature displacement on the perception of well-known faces. Perception. 1988;17(4):461–474. doi: 10.1068/p170461. [DOI] [PubMed] [Google Scholar]
- Hummel J. E., Biederman I. Dynamic binding in a neural network for shape recognition. Psychol Rev. 1992 Jul;99(3):480–517. doi: 10.1037/0033-295x.99.3.480. [DOI] [PubMed] [Google Scholar]
- Johnston A., Hill H., Carman N. Recognising faces: effects of lighting direction, inversion, and brightness reversal. Perception. 1992;21(3):365–375. doi: 10.1068/p210365. [DOI] [PubMed] [Google Scholar]
- Jolicoeur P. The time to name disoriented natural objects. Mem Cognit. 1985 Jul;13(4):289–303. doi: 10.3758/bf03202498. [DOI] [PubMed] [Google Scholar]
- Kobatake E., Tanaka K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol. 1994 Mar;71(3):856–867. doi: 10.1152/jn.1994.71.3.856. [DOI] [PubMed] [Google Scholar]
- Logothetis N. K., Pauls J., Bülthoff H. H., Poggio T. View-dependent object recognition by monkeys. Curr Biol. 1994 May 1;4(5):401–414. doi: 10.1016/s0960-9822(00)00089-0. [DOI] [PubMed] [Google Scholar]
- Rolls E. T. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philos Trans R Soc Lond B Biol Sci. 1992 Jan 29;335(1273):11–21. doi: 10.1098/rstb.1992.0002. [DOI] [PubMed] [Google Scholar]
- Sergent J., Ohta S., MacDonald B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain. 1992 Feb;115(Pt 1):15–36. doi: 10.1093/brain/115.1.15. [DOI] [PubMed] [Google Scholar]
- Tanaka J. W., Farah M. J. Parts and wholes in face recognition. Q J Exp Psychol A. 1993 May;46(2):225–245. doi: 10.1080/14640749308401045. [DOI] [PubMed] [Google Scholar]
- Tootell R. B., Dale A. M., Sereno M. I., Malach R. New images from human visual cortex. Trends Neurosci. 1996 Nov;19(11):481–489. doi: 10.1016/S0166-2236(96)10053-9. [DOI] [PubMed] [Google Scholar]
- Tversky B., Hemenway K. Objects, parts, and categories. J Exp Psychol Gen. 1984 Jun;113(2):169–197. [PubMed] [Google Scholar]
- Young A. W., Hay D. C., McWeeny K. H., Flude B. M., Ellis A. W. Matching familiar and unfamiliar faces on internal and external features. Perception. 1985;14(6):737–746. doi: 10.1068/p140737. [DOI] [PubMed] [Google Scholar]
- Young A. W., Hellawell D., Hay D. C. Configurational information in face perception. Perception. 1987;16(6):747–759. doi: 10.1068/p160747. [DOI] [PubMed] [Google Scholar]
- Young M. P., Yamane S. Sparse population coding of faces in the inferotemporal cortex. Science. 1992 May 29;256(5061):1327–1331. doi: 10.1126/science.1598577. [DOI] [PubMed] [Google Scholar]