Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Sep 29;352(1359):1369–1375. doi: 10.1098/rstb.1997.0122

Antigenic variation in Giardia lamblia and the host's immune response.

T E Nash 1
PMCID: PMC1692022  PMID: 9355129

Abstract

Giardia lamblia, a protozoan parasite of the small intestine of humans and other animals, undergoes surface antigenic variation. The antigens involved belong to a family of variant-specific surface proteins (VSPs), which are unique, cysteine-rich zinc finger proteins. The patterns of infection in humans and animals fail to show the expected cyclical waves of increasing and decreasing numbers of parasites expressing unique VSPs. Nevertheless, changes in VSP expression occur within the population in vivo owing to selection of VSPs by both immune and non-immune mechanisms. After inoculation of a single G. lamblia clone (able to persist in the absence of immune pressure) expressing one VSP (> or = 90%) into mice or humans, the original VSP continues to be expressed until 2 weeks post inoculation (p.i.), when many other VSPs gradually replace it. Selection by immune-mediated processes is suggested because switching occurs at the same time that humoral responses are first detected. In most mouse strains, switching also occurs at about two weeks. Almost all trophozoites are eliminated at three weeks (p.i.), but a barely detectable infection persists over months. In neonatal mice, apparent self-cure is delayed until the sixth or seventh week. Antigenic switching does not occur in adult or neonatal severe combined immunodeficiency disease (SCID) mice, but does occur in neonatal nude mice, thus implicating B-cell-mediated mechanisms in immune switching. Not all VSPs are expressed to the same degree in vivo. Some VSPs appear to be preferentially selected whereas others are eliminated on a non-immune basis. In infections in which immunity does not play a role, such as in SCID mice, and during the first week of infection in immunocompetent mice or gerbils, persisting VSPs are preferentially expressed and maintained whereas non-persisting VSPs are replaced within the first week of infection. The purpose of antigenic variation may be presentation of a wide assortment of VSPs to hosts, increasing the chance of a successful initial infection or reinfection. Immune selection of variants comes into play following biological selection.

Full Text

The Full Text of this article is available as a PDF (127.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam R. D., Aggarwal A., Lal A. A., de La Cruz V. F., McCutchan T., Nash T. E. Antigenic variation of a cysteine-rich protein in Giardia lamblia. J Exp Med. 1988 Jan 1;167(1):109–118. doi: 10.1084/jem.167.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aggarwal A., Merritt J. W., Jr, Nash T. E. Cysteine-rich variant surface proteins of Giardia lamblia. Mol Biochem Parasitol. 1989 Jan 1;32(1):39–47. doi: 10.1016/0166-6851(89)90127-8. [DOI] [PubMed] [Google Scholar]
  3. Aggarwal A., Nash T. E. Antigenic variation of Giardia lamblia in vivo. Infect Immun. 1988 Jun;56(6):1420–1423. doi: 10.1128/iai.56.6.1420-1423.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aggarwal A., Nash T. E. Comparison of two antigenically distinct Giardia lamblia isolates in gerbils. Am J Trop Med Hyg. 1987 Mar;36(2):325–332. doi: 10.4269/ajtmh.1987.36.325. [DOI] [PubMed] [Google Scholar]
  5. Aley S. B., Gillin F. D. Giardia lamblia: post-translational processing and status of exposed cysteine residues in TSA 417, a variable surface antigen. Exp Parasitol. 1993 Nov;77(3):295–305. doi: 10.1006/expr.1993.1087. [DOI] [PubMed] [Google Scholar]
  6. Ancsin J. B., Kisilevsky R. Laminin interactions important for basement membrane assembly are promoted by zinc and implicate laminin zinc finger-like sequences. J Biol Chem. 1996 Mar 22;271(12):6845–6851. doi: 10.1074/jbc.271.12.6845. [DOI] [PubMed] [Google Scholar]
  7. Baruch D. I., Pasloske B. L., Singh H. B., Bi X., Ma X. C., Feldman M., Taraschi T. F., Howard R. J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995 Jul 14;82(1):77–87. doi: 10.1016/0092-8674(95)90054-3. [DOI] [PubMed] [Google Scholar]
  8. Belosevic M., Faubert G. M., MacLean J. D., Law C., Croll N. A. Giardia lamblia infections in Mongolian gerbils: an animal model. J Infect Dis. 1983 Feb;147(2):222–226. doi: 10.1093/infdis/147.2.222. [DOI] [PubMed] [Google Scholar]
  9. Berg J. M., Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996 Feb 23;271(5252):1081–1085. doi: 10.1126/science.271.5252.1081. [DOI] [PubMed] [Google Scholar]
  10. Black R. E., Dykes A. C., Sinclair S. P., Wells J. G. Giardiasis in day-care centers: evidence of person-to-person transmission. Pediatrics. 1977 Oct;60(4):486–491. [PubMed] [Google Scholar]
  11. Borst P., Greaves D. R. Programmed gene rearrangements altering gene expression. Science. 1987 Feb 6;235(4789):658–667. doi: 10.1126/science.3544215. [DOI] [PubMed] [Google Scholar]
  12. Brodsky R. E., Spencer H. C., Jr, Schultz M. G. Giardiasis in American travelers to the Soviet Union. J Infect Dis. 1974 Sep;130(3):319–323. doi: 10.1093/infdis/130.3.319. [DOI] [PubMed] [Google Scholar]
  13. Byrd L. G., Conrad J. T., Nash T. E. Giardia lamblia infections in adult mice. Infect Immun. 1994 Aug;62(8):3583–3585. doi: 10.1128/iai.62.8.3583-3585.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Caron F., Meyer E. Molecular basis of surface antigen variation in paramecia. Annu Rev Microbiol. 1989;43:23–42. doi: 10.1146/annurev.mi.43.100189.000323. [DOI] [PubMed] [Google Scholar]
  15. Frankel A. D., Pabo C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988 Dec 23;55(6):1189–1193. doi: 10.1016/0092-8674(88)90263-2. [DOI] [PubMed] [Google Scholar]
  16. Galcheva-Gargova Z., Konstantinov K. N., Wu I. H., Klier F. G., Barrett T., Davis R. J. Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor. Science. 1996 Jun 21;272(5269):1797–1802. doi: 10.1126/science.272.5269.1797. [DOI] [PubMed] [Google Scholar]
  17. Gillin F. D., Hagblom P., Harwood J., Aley S. B., Reiner D. S., McCaffery M., So M., Guiney D. G. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4463–4467. doi: 10.1073/pnas.87.12.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gottstein B., Harriman G. R., Conrad J. T., Nash T. E. Antigenic variation in Giardia lamblia: cellular and humoral immune response in a mouse model. Parasite Immunol. 1990 Nov;12(6):659–673. doi: 10.1111/j.1365-3024.1990.tb00995.x. [DOI] [PubMed] [Google Scholar]
  19. Gottstein B., Nash T. E. Antigenic variation in Giardia lamblia: infection of congenitally athymic nude and scid mice. Parasite Immunol. 1991 Nov;13(6):649–659. doi: 10.1111/j.1365-3024.1991.tb00560.x. [DOI] [PubMed] [Google Scholar]
  20. He J., Furmanski P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature. 1995 Feb 23;373(6516):721–724. doi: 10.1038/373721a0. [DOI] [PubMed] [Google Scholar]
  21. Hermans P. E., Huizenga K. A., Hoffman H. N., Brown A. L., Jr, Markowitz H. Dysgammaglobulinemia associated with nodular lymphoid hyperplasia of the small intestine. Am J Med. 1966 Jan;40(1):78–89. doi: 10.1016/0002-9343(66)90189-6. [DOI] [PubMed] [Google Scholar]
  22. Hill D. R., Guerrant R. L., Pearson R. D., Hewlett E. L. Giardia lamblia infection of suckling mice. J Infect Dis. 1983 Feb;147(2):217–221. doi: 10.1093/infdis/147.2.217. [DOI] [PubMed] [Google Scholar]
  23. Lewis P. D., Jr, Belosevic M., Faubert G. M., Curthoys L., MacLean J. D. Cortisone-induced recrudescence of Giardia lamblia infections in gerbils. Am J Trop Med Hyg. 1987 Jan;36(1):33–40. doi: 10.4269/ajtmh.1987.36.33. [DOI] [PubMed] [Google Scholar]
  24. Lindholm P. F., Marriott S. J., Gitlin S. D., Bohan C. A., Brady J. N. Induction of nuclear NF-kappa B DNA binding activity after exposure of lymphoid cells to soluble tax1 protein. New Biol. 1990 Nov;2(11):1034–1043. [PubMed] [Google Scholar]
  25. Luján H. D., Marotta A., Mowatt M. R., Sciaky N., Lippincott-Schwartz J., Nash T. E. Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem. 1995 Mar 3;270(9):4612–4618. doi: 10.1074/jbc.270.9.4612. [DOI] [PubMed] [Google Scholar]
  26. Luján H. D., Mowatt M. R., Byrd L. G., Nash T. E. Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7628–7633. doi: 10.1073/pnas.93.15.7628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Luján H. D., Mowatt M. R., Wu J. J., Lu Y., Lees A., Chance M. R., Nash T. E. Purification of a variant-specific surface protein of Giardia lamblia and characterization of its metal-binding properties. J Biol Chem. 1995 Jun 9;270(23):13807–13813. doi: 10.1074/jbc.270.23.13807. [DOI] [PubMed] [Google Scholar]
  28. Mowatt M. R., Aggarwal A., Nash T. E. Carboxy-terminal sequence conservation among variant-specific surface proteins of Giardia lamblia. Mol Biochem Parasitol. 1991 Dec;49(2):215–227. doi: 10.1016/0166-6851(91)90065-e. [DOI] [PubMed] [Google Scholar]
  29. Nash T. E., Aggarwal A., Adam R. D., Conrad J. T., Merritt J. W., Jr Antigenic variation in Giardia lamblia. J Immunol. 1988 Jul 15;141(2):636–641. [PubMed] [Google Scholar]
  30. Nash T. E., Conrad J. T., Merritt J. W., Jr Variant specific epitopes of Giardia lamblia. Mol Biochem Parasitol. 1990 Aug;42(1):125–132. doi: 10.1016/0166-6851(90)90120-b. [DOI] [PubMed] [Google Scholar]
  31. Nash T. E., Herrington D. A., Losonsky G. A., Levine M. M. Experimental human infections with Giardia lamblia. J Infect Dis. 1987 Dec;156(6):974–984. doi: 10.1093/infdis/156.6.974. [DOI] [PubMed] [Google Scholar]
  32. Nash T. E., Keister D. B. Differences in excretory-secretory products and surface antigens among 19 isolates of Giardia. J Infect Dis. 1985 Dec;152(6):1166–1171. doi: 10.1093/infdis/152.6.1166. [DOI] [PubMed] [Google Scholar]
  33. Nash T. E., McCutchan T., Keister D., Dame J. B., Conrad J. D., Gillin F. D. Restriction-endonuclease analysis of DNA from 15 Giardia isolates obtained from humans and animals. J Infect Dis. 1985 Jul;152(1):64–73. doi: 10.1093/infdis/152.1.64. [DOI] [PubMed] [Google Scholar]
  34. Nash T. E., Merritt J. W., Jr, Conrad J. T. Isolate and epitope variability in susceptibility of Giardia lamblia to intestinal proteases. Infect Immun. 1991 Apr;59(4):1334–1340. doi: 10.1128/iai.59.4.1334-1340.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nash T. E., Mowatt M. R. Characterization of a Giardia lamblia variant-specific surface protein (VSP) gene from isolate GS/M and estimation of the VSP gene repertoire size. Mol Biochem Parasitol. 1992 Apr;51(2):219–227. doi: 10.1016/0166-6851(92)90072-r. [DOI] [PubMed] [Google Scholar]
  36. Nash T. E., Mowatt M. R. Variant-specific surface proteins of Giardia lamblia are zinc-binding proteins. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5489–5493. doi: 10.1073/pnas.90.12.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nash T. Surface antigen variability and variation in Giardia lamblia. Parasitol Today. 1992 Jul;8(7):229–234. doi: 10.1016/0169-4758(92)90119-m. [DOI] [PubMed] [Google Scholar]
  38. Pieler T., Bellefroid E. Perspectives on zinc finger protein function and evolution--an update. Mol Biol Rep. 1994 Jul;20(1):1–8. doi: 10.1007/BF00999848. [DOI] [PubMed] [Google Scholar]
  39. Pimenta P. F., da Silva P. P., Nash T. Variant surface antigens of Giardia lamblia are associated with the presence of a thick cell coat: thin section and label fracture immunocytochemistry survey. Infect Immun. 1991 Nov;59(11):3989–3996. doi: 10.1128/iai.59.11.3989-3996.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Poon D. T., Wu J., Aldovini A. Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. J Virol. 1996 Oct;70(10):6607–6616. doi: 10.1128/jvi.70.10.6607-6616.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. RENDTORFF R. C., HOLT C. J. The experimental transmission of human intestinal protozoan parasites. IV. Attempts to transmit Endamoeba coli and Giardia lamblia cysts by water. Am J Hyg. 1954 Nov;60(3):327–338. [PubMed] [Google Scholar]
  42. RENDTORFF R. C. The experimental transmission of human intestinal protozoan parasites. II. Giardia lamblia cysts given in capsules. Am J Hyg. 1954 Mar;59(2):209–220. doi: 10.1093/oxfordjournals.aje.a119634. [DOI] [PubMed] [Google Scholar]
  43. Roberts-Thomson I. C., Stevens D. P., Mahmoud A. A., Warren K. S. Acquired resistance to infection in an animal model of giardiasis. J Immunol. 1976 Nov;117(5 PT2):2036–2037. [PubMed] [Google Scholar]
  44. Schmerin M. J., Jones T. C., Klein H. Giardiasis: association with homosexuality. Ann Intern Med. 1978 Jun;88(6):801–803. doi: 10.7326/0003-4819-88-6-801. [DOI] [PubMed] [Google Scholar]
  45. Smith J. D., Chitnis C. E., Craig A. G., Roberts D. J., Hudson-Taylor D. E., Peterson D. S., Pinches R., Newbold C. I., Miller L. H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995 Jul 14;82(1):101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith P. D., Gillin F. D., Spira W. M., Nash T. E. Chronic giardiasis: studies on drug sensitivity, toxin production, and host immune response. Gastroenterology. 1982 Oct;83(4):797–803. [PubMed] [Google Scholar]
  47. Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989 Jan 6;243(4887):75–77. doi: 10.1126/science.2911720. [DOI] [PubMed] [Google Scholar]
  48. Su X. Z., Heatwole V. M., Wertheimer S. P., Guinet F., Herrfeldt J. A., Peterson D. S., Ravetch J. A., Wellems T. E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995 Jul 14;82(1):89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]
  49. Tondravi M. M., Willis R. L., Love H. D., Jr, Bannon G. A. Molecular characterization of SerH3, a Tetrahymena thermophila gene encoding a temperature-regulated surface antigen. Mol Cell Biol. 1990 Nov;10(11):6091–6096. doi: 10.1128/mcb.10.11.6091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang Y. Y., Aley S. B., Stanley S. L., Jr, Gillin F. D. Cysteine-dependent zinc binding by membrane proteins of Giardia lamblia. Infect Immun. 1993 Feb;61(2):520–524. doi: 10.1128/iai.61.2.520-524.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES