Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Oct 29;352(1360):1421–1428. doi: 10.1098/rstb.1997.0128

Multimodal integration for the representation of space in the posterior parietal cortex.

R A Andersen 1
PMCID: PMC1692052  PMID: 9368930

Abstract

The posterior parietal cortex has long been considered an 'association' area that combines information from different sensory modalities to form a cognitive representation of space. However, until recently little has been known about the neural mechanisms responsible for this important cognitive process. Recent experiments from the author's laboratory indicate that visual, somatosensory, auditory and vestibular signals are combined in areas LIP and 7a of the posterior parietal cortex. The integration of these signals can represent the locations of stimuli with respect to the observer and within the environment. Area MSTd combines visual motion signals, similar to those generated during an observer's movement through the environment, with eye-movement and vestibular signals. This integration appears to play a role in specifying the path on which the observer is moving. All three cortical areas combine different modalities into common spatial frames by using a gain-field mechanism. The spatial representations in areas LIP and 7a appear to be important for specifying the locations of targets for actions such as eye movements or reaching; the spatial representation within area MSTd appears to be important for navigation and the perceptual stability of motion signals.

Full Text

The Full Text of this article is available as a PDF (130.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen R. A., Asanuma C., Cowan W. M. Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: a study using retrogradely transported fluorescent dyes. J Comp Neurol. 1985 Feb 22;232(4):443–455. doi: 10.1002/cne.902320403. [DOI] [PubMed] [Google Scholar]
  2. Andersen R. A., Essick G. K., Siegel R. M. Encoding of spatial location by posterior parietal neurons. Science. 1985 Oct 25;230(4724):456–458. doi: 10.1126/science.4048942. [DOI] [PubMed] [Google Scholar]
  3. Andersen R. A., Essick G. K., Siegel R. M. Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Exp Brain Res. 1987;67(2):316–322. doi: 10.1007/BF00248552. [DOI] [PubMed] [Google Scholar]
  4. Andersen R. A., Mountcastle V. B. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 1983 Mar;3(3):532–548. doi: 10.1523/JNEUROSCI.03-03-00532.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andersen R. A., Snowden R. J., Treue S., Graziano M. Hierarchical processing of motion in the visual cortex of monkey. Cold Spring Harb Symp Quant Biol. 1990;55:741–748. doi: 10.1101/sqb.1990.055.01.069. [DOI] [PubMed] [Google Scholar]
  6. Asanuma C., Andersen R. A., Cowan W. M. The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol. 1985 Nov 15;241(3):357–381. doi: 10.1002/cne.902410309. [DOI] [PubMed] [Google Scholar]
  7. Barash S., Bracewell R. M., Fogassi L., Gnadt J. W., Andersen R. A. Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol. 1991 Sep;66(3):1095–1108. doi: 10.1152/jn.1991.66.3.1095. [DOI] [PubMed] [Google Scholar]
  8. Blatt G. J., Andersen R. A., Stoner G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol. 1990 Sep 22;299(4):421–445. doi: 10.1002/cne.902990404. [DOI] [PubMed] [Google Scholar]
  9. Bradley D. C., Maxwell M., Andersen R. A., Banks M. S., Shenoy K. V. Mechanisms of heading perception in primate visual cortex. Science. 1996 Sep 13;273(5281):1544–1547. doi: 10.1126/science.273.5281.1544. [DOI] [PubMed] [Google Scholar]
  10. Brotchie P. R., Andersen R. A., Snyder L. H., Goodman S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature. 1995 May 18;375(6528):232–235. doi: 10.1038/375232a0. [DOI] [PubMed] [Google Scholar]
  11. Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
  12. Duffy C. J., Wurtz R. H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J Neurosci. 1995 Jul;15(7 Pt 2):5192–5208. doi: 10.1523/JNEUROSCI.15-07-05192.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duffy C. J., Wurtz R. H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol. 1991 Jun;65(6):1329–1345. doi: 10.1152/jn.1991.65.6.1329. [DOI] [PubMed] [Google Scholar]
  14. Eifuku S., Nishijo H., Kita T., Ono T. Neuronal activity in the primate hippocampal formation during a conditional association task based on the subject's location. J Neurosci. 1995 Jul;15(7 Pt 1):4952–4969. doi: 10.1523/JNEUROSCI.15-07-04952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Geesaman B. J., Andersen R. A. The analysis of complex motion patterns by form/cue invariant MSTd neurons. J Neurosci. 1996 Aug 1;16(15):4716–4732. doi: 10.1523/JNEUROSCI.16-15-04716.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Graziano M. S., Andersen R. A., Snowden R. J. Tuning of MST neurons to spiral motions. J Neurosci. 1994 Jan;14(1):54–67. doi: 10.1523/JNEUROSCI.14-01-00054.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawano K., Sasaki M., Yamashita M. Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons. J Neurophysiol. 1984 Feb;51(2):340–351. doi: 10.1152/jn.1984.51.2.340. [DOI] [PubMed] [Google Scholar]
  18. Kawano K., Sasaki M., Yamashita M. Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey. Neurosci Lett. 1980 Apr;17(1-2):55–60. doi: 10.1016/0304-3940(80)90061-0. [DOI] [PubMed] [Google Scholar]
  19. Koch K. W., Fuster J. M. Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res. 1989;76(2):292–306. doi: 10.1007/BF00247889. [DOI] [PubMed] [Google Scholar]
  20. Komatsu H., Wurtz R. H. Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol. 1988 Aug;60(2):580–603. doi: 10.1152/jn.1988.60.2.580. [DOI] [PubMed] [Google Scholar]
  21. Komatsu H., Wurtz R. H. Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. J Neurophysiol. 1988 Aug;60(2):621–644. doi: 10.1152/jn.1988.60.2.621. [DOI] [PubMed] [Google Scholar]
  22. Kurylo D. D., Skavenski A. A. Eye movements elicited by electrical stimulation of area PG in the monkey. J Neurophysiol. 1991 Jun;65(6):1243–1253. doi: 10.1152/jn.1991.65.6.1243. [DOI] [PubMed] [Google Scholar]
  23. Lagae L., Maes H., Raiguel S., Xiao D. K., Orban G. A. Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol. 1994 May;71(5):1597–1626. doi: 10.1152/jn.1994.71.5.1597. [DOI] [PubMed] [Google Scholar]
  24. Lynch J. C., Graybiel A. M., Lobeck L. J. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol. 1985 May 8;235(2):241–254. doi: 10.1002/cne.902350207. [DOI] [PubMed] [Google Scholar]
  25. Lynch J. C., Mountcastle V. B., Talbot W. H., Yin T. C. Parietal lobe mechanisms for directed visual attention. J Neurophysiol. 1977 Mar;40(2):362–389. doi: 10.1152/jn.1977.40.2.362. [DOI] [PubMed] [Google Scholar]
  26. Maunsell J. H. The brain's visual world: representation of visual targets in cerebral cortex. Science. 1995 Nov 3;270(5237):764–769. doi: 10.1126/science.270.5237.764. [DOI] [PubMed] [Google Scholar]
  27. Motter B. C., Mountcastle V. B. The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. J Neurosci. 1981 Jan;1(1):3–26. doi: 10.1523/JNEUROSCI.01-01-00003.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mountcastle V. B., Lynch J. C., Georgopoulos A., Sakata H., Acuna C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol. 1975 Jul;38(4):871–908. doi: 10.1152/jn.1975.38.4.871. [DOI] [PubMed] [Google Scholar]
  29. Newsome W. T., Wurtz R. H., Komatsu H. Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol. 1988 Aug;60(2):604–620. doi: 10.1152/jn.1988.60.2.604. [DOI] [PubMed] [Google Scholar]
  30. Ono T., Nakamura K., Nishijo H., Eifuku S. Monkey hippocampal neurons related to spatial and nonspatial functions. J Neurophysiol. 1993 Oct;70(4):1516–1529. doi: 10.1152/jn.1993.70.4.1516. [DOI] [PubMed] [Google Scholar]
  31. Rolls E. T., O'Mara S. M. View-responsive neurons in the primate hippocampal complex. Hippocampus. 1995;5(5):409–424. doi: 10.1002/hipo.450050504. [DOI] [PubMed] [Google Scholar]
  32. Royden C. S., Banks M. S., Crowell J. A. The perception of heading during eye movements. Nature. 1992 Dec 10;360(6404):583–585. doi: 10.1038/360583a0. [DOI] [PubMed] [Google Scholar]
  33. Sakata H., Shibutani H., Kawano K., Harrington T. L. Neural mechanisms of space vision in the parietal association cortex of the monkey. Vision Res. 1985;25(3):453–463. doi: 10.1016/0042-6989(85)90070-7. [DOI] [PubMed] [Google Scholar]
  34. Sakata H., Takaoka Y., Kawarasaki A., Shibutani H. Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res. 1973 Dec 21;64:85–102. doi: 10.1016/0006-8993(73)90172-8. [DOI] [PubMed] [Google Scholar]
  35. Seal J., Gross C., Doudet D., Bioulac B. Instruction-related changes of neuronal activity in area 5 during a simple forearm movement in the monkey. Neurosci Lett. 1983 Apr 11;36(2):145–150. doi: 10.1016/0304-3940(83)90256-2. [DOI] [PubMed] [Google Scholar]
  36. Shibutani H., Sakata H., Hyvärinen J. Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp Brain Res. 1984;55(1):1–8. doi: 10.1007/BF00240493. [DOI] [PubMed] [Google Scholar]
  37. Snyder L. H., Batista A. P., Andersen R. A. Coding of intention in the posterior parietal cortex. Nature. 1997 Mar 13;386(6621):167–170. doi: 10.1038/386167a0. [DOI] [PubMed] [Google Scholar]
  38. Stricanne B., Andersen R. A., Mazzoni P. Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. J Neurophysiol. 1996 Sep;76(3):2071–2076. doi: 10.1152/jn.1996.76.3.2071. [DOI] [PubMed] [Google Scholar]
  39. Tanaka K., Hikosaka K., Saito H., Yukie M., Fukada Y., Iwai E. Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci. 1986 Jan;6(1):134–144. doi: 10.1523/JNEUROSCI.06-01-00134.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thier P., Andersen R. A. Electrical microstimulation suggests two different forms of representation of head-centered space in the intraparietal sulcus of rhesus monkeys. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4962–4967. doi: 10.1073/pnas.93.10.4962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thier P., Erickson R. G. Responses of Visual-Tracking Neurons from Cortical Area MST-I to Visual, Eye and Head Motion. Eur J Neurosci. 1992;4(6):539–553. doi: 10.1111/j.1460-9568.1992.tb00904.x. [DOI] [PubMed] [Google Scholar]
  42. Zipser D., Andersen R. A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature. 1988 Feb 25;331(6158):679–684. doi: 10.1038/331679a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES