Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Oct 29;352(1360):1481–1488. doi: 10.1098/rstb.1997.0135

Amnesia and neglect: beyond the Delay-Brion system and the Hebb synapse.

D Gaffan 1, J Hornak 1
PMCID: PMC1692054  PMID: 9368937

Abstract

Hippocampal damage in people causes impairments of episodic memory, but in rats it causes impairments of spatial learning. Experiments in macaque monkeys show that these two kinds of impairment are functionally similar to each other. After any lesion that interrupts the Delay-Brion system (hippocampus, fornix, mamillary bodies and anterior thalamus) monkeys are impaired in scene-specific memory, where an event takes place against a background that is specific to that event. Scene-specific memory in the monkey corresponds to human episodic memory, which is the memory of a unique event set in a particular scene, as opposed to scene-independent human knowledge, which is abstracted from many different scenes. However, interruption of the Delay-Brion system is not sufficient to explain all of the memory impairments that are seen in amnesic patients. To explain amnesia the specialized function of the hippocampus in scene memory needs to be considered alongside the other, qualitatively different functional specializations of other memory systems of the temporal lobe, including the perirhinal cortex and the amygdala. In all these specialized areas, however, including the hippocampus, there is no fundamental distinction between memory systems and perceptual systems. In explaining memory disorders in amnesia it is also important to consider them alongside the memory disorders of neglect patients. Neglect patients fail to represent in memory the side of the world that is contralateral to the current fixation point, in both short- and long-term memory retrieval. Neglect was produced experimentally by unilateral visual disconnection in the monkey, confirming the idea that visual memory retrieval is retinotopically organized; patients with unilateral medial temporal-lobe removals showed lateralized memory impairments for half-scenes in the visual hemifield contralateral to the removal. Thus, in scene-memory retrieval the Delay-Brion system contributes to the retrieval of visual memories into the retinotopically organized visual cortex. This scene memory interpretation of hippocampal function needs to be contrasted with the cognitive-map hypothesis. The cognitive-map model of hippocampal function shares some common assumptions with the Hebb-synapse model of association formation, and the Hebb-synapse model can be rejected on the basis of recent evidence that monkeys can form direct associations in memory between temporally discontiguous events. Our general conclusion is that the primate brain encompasses widespread and powerful memory mechanisms which will continue to be poorly understood if theory and experimentation continue to concentrate too much, as they have in the past, on the hippocampus and the Hebb synapse.

Full Text

The Full Text of this article is available as a PDF (128.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachevalier J., Mishkin M. Mnemonic and neuropathological effects of occluding the posterior cerebral artery in Macaca mulatta. Neuropsychologia. 1989;27(1):83–105. doi: 10.1016/0028-3932(89)90092-4. [DOI] [PubMed] [Google Scholar]
  2. Batchelor A. M., Garthwaite J. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature. 1997 Jan 2;385(6611):74–77. doi: 10.1038/385074a0. [DOI] [PubMed] [Google Scholar]
  3. Bisiach E., Luzzatti C., Perani D. Unilateral neglect, representational schema and consciousness. Brain. 1979 Sep;102(3):609–618. doi: 10.1093/brain/102.3.609. [DOI] [PubMed] [Google Scholar]
  4. Brown M. W., Wilson F. A., Riches I. P. Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res. 1987 Apr 14;409(1):158–162. doi: 10.1016/0006-8993(87)90753-0. [DOI] [PubMed] [Google Scholar]
  5. Brown T. H., Kairiss E. W., Keenan C. L. Hebbian synapses: biophysical mechanisms and algorithms. Annu Rev Neurosci. 1990;13:475–511. doi: 10.1146/annurev.ne.13.030190.002355. [DOI] [PubMed] [Google Scholar]
  6. Buckley M. J., Gaffan D. Impairment of visual object-discrimination learning after perirhinal cortex ablation. Behav Neurosci. 1997 Jun;111(3):467–475. doi: 10.1037//0735-7044.111.3.467. [DOI] [PubMed] [Google Scholar]
  7. Buckley M. J., Gaffan D., Murray E. A. Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. J Neurophysiol. 1997 Feb;77(2):587–598. doi: 10.1152/jn.1997.77.2.587. [DOI] [PubMed] [Google Scholar]
  8. Eacott M. J., Gaffan D., Murray E. A. Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur J Neurosci. 1994 Sep 1;6(9):1466–1478. doi: 10.1111/j.1460-9568.1994.tb01008.x. [DOI] [PubMed] [Google Scholar]
  9. Gaffan D. Amnesia for Complex Naturalistic Scenes and for Objects Following Fornix Transection in the Rhesus Monkey. Eur J Neurosci. 1992;4(5):381–388. doi: 10.1111/j.1460-9568.1992.tb00886.x. [DOI] [PubMed] [Google Scholar]
  10. Gaffan D., Gaffan E. A. Amnesia in man following transection of the fornix. A review. Brain. 1991 Dec;114(Pt 6):2611–2618. doi: 10.1093/brain/114.6.2611. [DOI] [PubMed] [Google Scholar]
  11. Gaffan D., Gowling E. A. Recall of the goal box in latent learning and latent discrimination. Q J Exp Psychol B. 1984 Feb;36(1):39–51. doi: 10.1080/14640748408402193. [DOI] [PubMed] [Google Scholar]
  12. Gaffan D., Harrison S. Amygdalectomy and disconnection in visual learning for auditory secondary reinforcement by monkeys. J Neurosci. 1987 Aug;7(8):2285–2292. [PMC free article] [PubMed] [Google Scholar]
  13. Gaffan D., Murray E. A. Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. Behav Neurosci. 1992 Feb;106(1):30–38. doi: 10.1037//0735-7044.106.1.30. [DOI] [PubMed] [Google Scholar]
  14. Gaffan D., Parker A. Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and "object-in-place" memory. J Neurosci. 1996 Sep 15;16(18):5864–5869. doi: 10.1523/JNEUROSCI.16-18-05864.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gutnikov S. A., Gaffan D. Systemic NMDA receptor antagonist CGP-40116 does not impair memory acquisition but protects against NMDA neurotoxicity in rhesus monkeys. J Neurosci. 1996 Jun 15;16(12):4041–4045. doi: 10.1523/JNEUROSCI.16-12-04041.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gutnikov S. A., Ma Y. Y., Buckley M. J., Gaffan D. Monkeys can associate visual stimuli with reward delayed by 1 s even after perirhinal cortex ablation, uncinate fascicle section or amygdalectomy. Behav Brain Res. 1997 Aug;87(1):85–96. doi: 10.1016/s0166-4328(96)02259-0. [DOI] [PubMed] [Google Scholar]
  17. Horel J. A., Pytko-Joiner D. E., Voytko M. L., Salsbury K. The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold. Behav Brain Res. 1987 Jan;23(1):29–42. doi: 10.1016/0166-4328(87)90240-3. [DOI] [PubMed] [Google Scholar]
  18. Hornak J. Ocular exploration in the dark by patients with visual neglect. Neuropsychologia. 1992 Jun;30(6):547–552. doi: 10.1016/0028-3932(92)90057-s. [DOI] [PubMed] [Google Scholar]
  19. Hornak J., Oxbury S., Oxbury J., Iversen S. D., Gaffan D. Hemifield-specific visual recognition memory impairments in patients with unilateral temporal lobe removals. Neuropsychologia. 1997 Sep;35(9):1311–1315. doi: 10.1016/s0028-3932(97)00062-6. [DOI] [PubMed] [Google Scholar]
  20. Hornak J. Perceptual completion in patients with drawing neglect: eye-movement and tachistoscopic investigations. Neuropsychologia. 1995 Mar;33(3):305–325. doi: 10.1016/0028-3932(94)00117-8. [DOI] [PubMed] [Google Scholar]
  21. Hölscher C., McGlinchey L., Anwyl R., Rowan M. J. HFS-induced long-term potentiation and LFS-induced depotentiation in area CA1 of the hippocampus are not good models for learning. Psychopharmacology (Berl) 1997 Mar;130(2):174–182. doi: 10.1007/s002130050226. [DOI] [PubMed] [Google Scholar]
  22. Markowska A. L., Olton D. S., Murray E. A., Gaffan D. A comparative analysis of the role of fornix and cingulate cortex in memory: rats. Exp Brain Res. 1989;74(1):187–201. doi: 10.1007/BF00248292. [DOI] [PubMed] [Google Scholar]
  23. McMackin D., Cockburn J., Anslow P., Gaffan D. Correlation of fornix damage with memory impairment in six cases of colloid cyst removal. Acta Neurochir (Wien) 1995;135(1-2):12–18. doi: 10.1007/BF02307408. [DOI] [PubMed] [Google Scholar]
  24. Meador K. J., Loring D. W., Bowers D., Heilman K. M. Remote memory and neglect syndrome. Neurology. 1987 Mar;37(3):522–526. doi: 10.1212/wnl.37.3.522. [DOI] [PubMed] [Google Scholar]
  25. Meunier M., Bachevalier J., Mishkin M., Murray E. A. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci. 1993 Dec;13(12):5418–5432. doi: 10.1523/JNEUROSCI.13-12-05418.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moss M., Mahut H., Zola-Morgan S. Concurrent discrimination learning of monkeys after hippocampal, entorhinal, or fornix lesions. J Neurosci. 1981 Mar;1(3):227–240. doi: 10.1523/JNEUROSCI.01-03-00227.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murray E. A., Davidson M., Gaffan D., Olton D. S., Suomi S. Effects of fornix transection and cingulate cortical ablation on spatial memory in rhesus monkeys. Exp Brain Res. 1989;74(1):173–186. doi: 10.1007/BF00248291. [DOI] [PubMed] [Google Scholar]
  28. Murray E. A., Gaffan D., Mishkin M. Neural substrates of visual stimulus-stimulus association in rhesus monkeys. J Neurosci. 1993 Oct;13(10):4549–4561. doi: 10.1523/JNEUROSCI.13-10-04549.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rolls E. T., Treves A., Tovee M. J. The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Exp Brain Res. 1997 Mar;114(1):149–162. doi: 10.1007/pl00005615. [DOI] [PubMed] [Google Scholar]
  30. SCOVILLE W. B., MILNER B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11–21. doi: 10.1136/jnnp.20.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saucier D., Cain D. P. Spatial learning without NMDA receptor-dependent long-term potentiation. Nature. 1995 Nov 9;378(6553):186–189. doi: 10.1038/378186a0. [DOI] [PubMed] [Google Scholar]
  32. Squire L. R., Zola-Morgan S. The medial temporal lobe memory system. Science. 1991 Sep 20;253(5026):1380–1386. doi: 10.1126/science.1896849. [DOI] [PubMed] [Google Scholar]
  33. Warrington E. K., Duchen L. W. A re-appraisal of a case of persistent global amnesia following right temporal lobectomy: a clinico-pathological study. Neuropsychologia. 1992 May;30(5):437–450. doi: 10.1016/0028-3932(92)90091-y. [DOI] [PubMed] [Google Scholar]
  34. Zola-Morgan S., Squire L. R., Amaral D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986 Oct;6(10):2950–2967. doi: 10.1523/JNEUROSCI.06-10-02950.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES