Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Oct 29;352(1360):1437–1448. doi: 10.1098/rstb.1997.0130

Parietal and hippocampal contribution to topokinetic and topographic memory.

A Berthoz 1
PMCID: PMC1692062  PMID: 9368932

Abstract

This paper reviews the involvement of the parietal cortex and the hippocampus in three kinds of spatial memory tasks which all require a memory of a previously experienced movement in space. The first task compared, by means of positron emission tomography (PET) scan techniques, the production, in darkness, of self-paced saccades (SAC) with the reproduction, in darkness, of a previously learned sequence of saccades to visual targets (SEQ). The results show that a bilateral increase of activity was seen in the depth of the intraparietal sulcus and the medial superior parietal cortex (superior parietal gyrus and precuneus) together with the frontal sulcus but only in the SEQ task, which involved memory of the previously seen targets and possibly also motor memory. The second task is the vestibular memory contingent task, which requires that the subject makes, in darkness, a saccade to the remembered position of a visual target after a passively imposed whole-body rotation. Deficits in this task, which involves vestibular memory, were found predominantly in patients with focal vascular lesions in the parieto-insular (vestibular) cortex, the supplementary motor area-supplementary eye field area, and the prefrontal cortex. The third task requires mental navigation from the memory of a previously learned route in a real environment (the city of Orsay in France). A PET scan study has revealed that when subjects were asked to remember visual landmarks there was a bilateral activation of the middle hippocampal regions, left inferior temporal gyrus, left hippocampal regions, precentral gyrus and posterior cingulate gyrus. If the subjects were asked to remember the route, and their movements along this route, bilateral activation of the dorsolateral cortex, posterior hippocampal areas, posterior cingulate gyrus, supplementary motor areas, right middle hippocampal areas, left precuneus, middle occipital gyrus, fusiform gyrus and lateral premotor area was found. Subtraction between the two conditions reduced the activated areas to the left hippocampus, precuneus and insula. These data suggest that the hippocampus and parietal cortex are both involved in the dynamic aspects of spatial memory, for which the name 'topokinetic memory' is proposed. These dynamic aspects could both overlap and be different from those involved in the cartographic and static aspects of 'topographic' memory.

Full Text

The Full Text of this article is available as a PDF (263.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre G. K., Detre J. A., Alsop D. C., D'Esposito M. The parahippocampus subserves topographical learning in man. Cereb Cortex. 1996 Nov-Dec;6(6):823–829. doi: 10.1093/cercor/6.6.823. [DOI] [PubMed] [Google Scholar]
  2. Akbarian S., Grüsser O. J., Guldin W. O. Corticofugal projections to the vestibular nuclei in squirrel monkeys: further evidence of multiple cortical vestibular fields. J Comp Neurol. 1993 Jun 1;332(1):89–104. doi: 10.1002/cne.903320107. [DOI] [PubMed] [Google Scholar]
  3. Amorim M. A., Glasauer S., Corpinot K., Berthoz A. Updating an object's orientation and location during nonvisual navigation: a comparison between two processing modes. Percept Psychophys. 1997 Apr;59(3):404–418. doi: 10.3758/bf03211907. [DOI] [PubMed] [Google Scholar]
  4. Andersen R. A. Encoding of intention and spatial location in the posterior parietal cortex. Cereb Cortex. 1995 Sep-Oct;5(5):457–469. doi: 10.1093/cercor/5.5.457. [DOI] [PubMed] [Google Scholar]
  5. Barash S., Bracewell R. M., Fogassi L., Gnadt J. W., Andersen R. A. Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol. 1991 Sep;66(3):1095–1108. doi: 10.1152/jn.1991.66.3.1095. [DOI] [PubMed] [Google Scholar]
  6. Berthoz A. Coopération et substitution entre le système saccadique et les "réflexes" d'origine vestibulaire: faut-il réviser la notion de "réflexe"? Rev Neurol (Paris) 1989;145(8-9):513–526. [PubMed] [Google Scholar]
  7. Berthoz A., Israël I., Georges-François P., Grasso R., Tsuzuku T. Spatial memory of body linear displacement: what is being stored? Science. 1995 Jul 7;269(5220):95–98. doi: 10.1126/science.7604286. [DOI] [PubMed] [Google Scholar]
  8. Berthoz A., Israël I., Viéville T., Zee D. Linear head displacement measured by the otoliths can be reproduced through the saccadic system. Neurosci Lett. 1987 Dec 4;82(3):285–290. doi: 10.1016/0304-3940(87)90270-9. [DOI] [PubMed] [Google Scholar]
  9. Bloomberg J., Jones G. M., Segal B., McFarlane S., Soul J. Vestibular-contingent voluntary saccades based on cognitive estimates of remembered vestibular information. Adv Otorhinolaryngol. 1988;41:71–75. doi: 10.1159/000416034. [DOI] [PubMed] [Google Scholar]
  10. Bonda E., Petrides M., Frey S., Evans A. Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11180–11184. doi: 10.1073/pnas.92.24.11180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bottini G., Sterzi R., Paulesu E., Vallar G., Cappa S. F., Erminio F., Passingham R. E., Frith C. D., Frackowiak R. S. Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res. 1994;99(1):164–169. doi: 10.1007/BF00241421. [DOI] [PubMed] [Google Scholar]
  12. Brandt T., Dieterich M., Danek A. Vestibular cortex lesions affect the perception of verticality. Ann Neurol. 1994 Apr;35(4):403–412. doi: 10.1002/ana.410350406. [DOI] [PubMed] [Google Scholar]
  13. Colby C. L., Duhamel J. R., Goldberg M. E. Oculocentric spatial representation in parietal cortex. Cereb Cortex. 1995 Sep-Oct;5(5):470–481. doi: 10.1093/cercor/5.5.470. [DOI] [PubMed] [Google Scholar]
  14. Courtney S. M., Ungerleider L. G., Keil K., Haxby J. V. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb Cortex. 1996 Jan-Feb;6(1):39–49. doi: 10.1093/cercor/6.1.39. [DOI] [PubMed] [Google Scholar]
  15. Droulez J., Berthoz A. A neural network model of sensoritopic maps with predictive short-term memory properties. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9653–9657. doi: 10.1073/pnas.88.21.9653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Duhamel J. R., Colby C. L., Goldberg M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science. 1992 Jan 3;255(5040):90–92. doi: 10.1126/science.1553535. [DOI] [PubMed] [Google Scholar]
  17. Faugier-Grimaud S., Ventre J. Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol. 1989 Feb 1;280(1):1–14. doi: 10.1002/cne.902800102. [DOI] [PubMed] [Google Scholar]
  18. Fletcher P. C., Frith C. D., Baker S. C., Shallice T., Frackowiak R. S., Dolan R. J. The mind's eye--precuneus activation in memory-related imagery. Neuroimage. 1995 Sep;2(3):195–200. doi: 10.1006/nimg.1995.1025. [DOI] [PubMed] [Google Scholar]
  19. Gavrilov V. V., Wiener S. I., Berthoz A. Enhanced hippocampal theta EEG during whole body rotations in awake restrained rats. Neurosci Lett. 1995 Sep 15;197(3):239–241. doi: 10.1016/0304-3940(95)11918-m. [DOI] [PubMed] [Google Scholar]
  20. Gaymard B., Pierrot-Deseilligny C., Rivaud S. Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Ann Neurol. 1990 Nov;28(5):622–626. doi: 10.1002/ana.410280504. [DOI] [PubMed] [Google Scholar]
  21. Gaymard B., Rivaud S., Pierrot-Deseilligny C. Role of the left and right supplementary motor areas in memory-guided saccade sequences. Ann Neurol. 1993 Sep;34(3):404–406. doi: 10.1002/ana.410340317. [DOI] [PubMed] [Google Scholar]
  22. Ghaem O., Mellet E., Crivello F., Tzourio N., Mazoyer B., Berthoz A., Denis M. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport. 1997 Feb 10;8(3):739–744. doi: 10.1097/00001756-199702100-00032. [DOI] [PubMed] [Google Scholar]
  23. Glasauer S., Amorim M. A., Vitte E., Berthoz A. Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Exp Brain Res. 1994;98(2):323–335. doi: 10.1007/BF00228420. [DOI] [PubMed] [Google Scholar]
  24. Grüsser O. J., Pause M., Schreiter U. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol. 1990 Nov;430:537–557. doi: 10.1113/jphysiol.1990.sp018306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grüsser O. J., Pause M., Schreiter U. Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol. 1990 Nov;430:559–583. doi: 10.1113/jphysiol.1990.sp018307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Guariglia C., Padovani A., Pantano P., Pizzamiglio L. Unilateral neglect restricted to visual imagery. Nature. 1993 Jul 15;364(6434):235–237. doi: 10.1038/364235a0. [DOI] [PubMed] [Google Scholar]
  27. Guldin W. O., Mirring S., Grüsser O. J. Connections from the neocortex to the vestibular brain stem nuclei in the common marmoset. Neuroreport. 1993 Nov 18;5(2):113–116. doi: 10.1097/00001756-199311180-00004. [DOI] [PubMed] [Google Scholar]
  28. Gulyás B., Roland P. E. Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1239–1243. doi: 10.1073/pnas.91.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Habib M., Sirigu A. Pure topographical disorientation: a definition and anatomical basis. Cortex. 1987 Mar;23(1):73–85. doi: 10.1016/s0010-9452(87)80020-5. [DOI] [PubMed] [Google Scholar]
  30. Haxby J. V., Horwitz B., Ungerleider L. G., Maisog J. M., Pietrini P., Grady C. L. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci. 1994 Nov;14(11 Pt 1):6336–6353. doi: 10.1523/JNEUROSCI.14-11-06336.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hécaen H., Tzortzis C., Rondot P. Loss of topographic memory with learning deficits. Cortex. 1980 Dec;16(4):525–542. doi: 10.1016/s0010-9452(80)80001-3. [DOI] [PubMed] [Google Scholar]
  32. Incisa della Rocchetta A., Cipolotti L., Warrington E. K. Topographical disorientation: selective impairment of locomotor space? Cortex. 1996 Dec;32(4):727–735. doi: 10.1016/s0010-9452(96)80042-6. [DOI] [PubMed] [Google Scholar]
  33. Israël I., André-Deshays C., Charade O., Berthoz A., Popov K., Lipshits M. Gaze control in microgravity. 2. Sequences of saccades toward memorized visual targets. J Vestib Res. 1993 Fall;3(3):345–360. [PubMed] [Google Scholar]
  34. Israël I., Berthoz A. Contribution of the otoliths to the calculation of linear displacement. J Neurophysiol. 1989 Jul;62(1):247–263. doi: 10.1152/jn.1989.62.1.247. [DOI] [PubMed] [Google Scholar]
  35. Israël I., Chapuis N., Glasauer S., Charade O., Berthoz A. Estimation of passive horizontal linear whole-body displacement in humans. J Neurophysiol. 1993 Sep;70(3):1270–1273. doi: 10.1152/jn.1993.70.3.1270. [DOI] [PubMed] [Google Scholar]
  36. Israël I., Fetter M., Koenig E. Vestibular perception of passive whole-body rotation about horizontal and vertical axes in humans: goal-directed vestibulo-ocular reflex and vestibular memory-contingent saccades. Exp Brain Res. 1993;96(2):335–346. doi: 10.1007/BF00227113. [DOI] [PubMed] [Google Scholar]
  37. Israël I., Rivaud S., Berthoz A., Pierrot-Deseilligny C. Cortical control of vestibular memory-guided saccades. Ann N Y Acad Sci. 1992 May 22;656:472–484. doi: 10.1111/j.1749-6632.1992.tb25229.x. [DOI] [PubMed] [Google Scholar]
  38. Israël I., Rivaud S., Gaymard B., Berthoz A., Pierrot-Deseilligny C. Cortical control of vestibular-guided saccades in man. Brain. 1995 Oct;118(Pt 5):1169–1183. doi: 10.1093/brain/118.5.1169. [DOI] [PubMed] [Google Scholar]
  39. Kawano K., Sasaki M., Yamashita M. Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons. J Neurophysiol. 1984 Feb;51(2):340–351. doi: 10.1152/jn.1984.51.2.340. [DOI] [PubMed] [Google Scholar]
  40. Kawano K., Sasaki M., Yamashita M. Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey. Neurosci Lett. 1980 Apr;17(1-2):55–60. doi: 10.1016/0304-3940(80)90061-0. [DOI] [PubMed] [Google Scholar]
  41. Lang W., Petit L., Höllinger P., Pietrzyk U., Tzourio N., Mazoyer B., Berthoz A. A positron emission tomography study of oculomotor imagery. Neuroreport. 1994 Apr 14;5(8):921–924. doi: 10.1097/00001756-199404000-00017. [DOI] [PubMed] [Google Scholar]
  42. Mergner T., Nardi G. L., Becker W., Deecke L. The role of canal-neck interaction for the perception of horizontal trunk and head rotation. Exp Brain Res. 1983;49(2):198–208. doi: 10.1007/BF00238580. [DOI] [PubMed] [Google Scholar]
  43. Metcalfe T., Gresty M. Self-controlled reorienting movements in response to rotational displacements in normal subjects and patients with labyrinthine disease. Ann N Y Acad Sci. 1992 May 22;656:695–698. doi: 10.1111/j.1749-6632.1992.tb25246.x. [DOI] [PubMed] [Google Scholar]
  44. Miyashita Y., Rolls E. T., Cahusac P. M., Niki H., Feigenbaum J. D. Activity of hippocampal formation neurons in the monkey related to a conditional spatial response task. J Neurophysiol. 1989 Mar;61(3):669–678. doi: 10.1152/jn.1989.61.3.669. [DOI] [PubMed] [Google Scholar]
  45. Müri R. M., Rivaud S., Timsit S., Cornu P., Pierrot-Deseilligny C. The role of the right medial temporal lobe in the control of memory-guided saccades. Exp Brain Res. 1994;101(1):165–168. doi: 10.1007/BF00243227. [DOI] [PubMed] [Google Scholar]
  46. O'Mara S. M., Rolls E. T., Berthoz A., Kesner R. P. Neurons responding to whole-body motion in the primate hippocampus. J Neurosci. 1994 Nov;14(11 Pt 1):6511–6523. doi: 10.1523/JNEUROSCI.14-11-06511.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. PALLIS C. A. Impaired identification of faces and places with agnosia for colours; report of a case due to cerebral embolism. J Neurol Neurosurg Psychiatry. 1955 Aug;18(3):218–224. doi: 10.1136/jnnp.18.3.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Petit L., Orssaud C., Tzourio N., Crivello F., Berthoz A., Mazoyer B. Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci. 1996 Jun 1;16(11):3714–3726. doi: 10.1523/JNEUROSCI.16-11-03714.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Petit L., Orssaud C., Tzourio N., Salamon G., Mazoyer B., Berthoz A. PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. J Neurophysiol. 1993 Apr;69(4):1009–1017. doi: 10.1152/jn.1993.69.4.1009. [DOI] [PubMed] [Google Scholar]
  50. Pierrot-Deseilligny C., Israël I., Berthoz A., Rivaud S., Gaymard B. Role of the different frontal lobe areas in the control of the horizontal component of memory-guided saccades in man. Exp Brain Res. 1993;95(1):166–171. doi: 10.1007/BF00229665. [DOI] [PubMed] [Google Scholar]
  51. Pierrot-Deseilligny C., Rivaud S., Gaymard B., Müri R., Vermersch A. I. Cortical control of saccades. Ann Neurol. 1995 May;37(5):557–567. doi: 10.1002/ana.410370504. [DOI] [PubMed] [Google Scholar]
  52. Quintana J., Fuster J. M. Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration. Cereb Cortex. 1993 Mar-Apr;3(2):122–132. doi: 10.1093/cercor/3.2.122. [DOI] [PubMed] [Google Scholar]
  53. Rolls E. T. Functions of the primate hippocampus in spatial and nonspatial memory. Hippocampus. 1991 Jul;1(3):258–261. doi: 10.1002/hipo.450010310. [DOI] [PubMed] [Google Scholar]
  54. Schweigart G., Heimbrand S., Mergner T., Becker W. Perception of horizontal head and trunk rotation: modification of neck input following loss of vestibular function. Exp Brain Res. 1993;95(3):533–546. doi: 10.1007/BF00227147. [DOI] [PubMed] [Google Scholar]
  55. Sharp P. E., Blair H. T., Etkin D., Tzanetos D. B. Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells. J Neurosci. 1995 Jan;15(1 Pt 1):173–189. doi: 10.1523/JNEUROSCI.15-01-00173.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Smith M. L., Milner B. The role of the right hippocampus in the recall of spatial location. Neuropsychologia. 1981;19(6):781–793. doi: 10.1016/0028-3932(81)90090-7. [DOI] [PubMed] [Google Scholar]
  57. Tamura R., Ono T., Fukuda M., Nakamura K. Spatial responsiveness of monkey hippocampal neurons to various visual and auditory stimuli. Hippocampus. 1992 Jul;2(3):307–322. doi: 10.1002/hipo.450020309. [DOI] [PubMed] [Google Scholar]
  58. Tamura R., Ono T., Fukuda M., Nishijo H. Monkey hippocampal neuron responses to complex sensory stimulation during object discrimination. Hippocampus. 1992 Jul;2(3):287–306. doi: 10.1002/hipo.450020308. [DOI] [PubMed] [Google Scholar]
  59. Taube J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci. 1995 Jan;15(1 Pt 1):70–86. doi: 10.1523/JNEUROSCI.15-01-00070.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Taube J. S., Muller R. U., Ranck J. B., Jr Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990 Feb;10(2):420–435. doi: 10.1523/JNEUROSCI.10-02-00420.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Thomson J. A. Is continuous visual monitoring necessary in visually guided locomotion? J Exp Psychol Hum Percept Perform. 1983 Jun;9(3):427–443. doi: 10.1037//0096-1523.9.3.427. [DOI] [PubMed] [Google Scholar]
  62. Tropper J., Jones G. M., Bloomberg J., Fadlallah H. Vestibular perceptual deficits in patients with parietal lobe lesions. A preliminary study. Acta Otolaryngol Suppl. 1991;481:528–533. doi: 10.3109/00016489109131463. [DOI] [PubMed] [Google Scholar]
  63. Vallar G., Sterzi R., Bottini G., Cappa S., Rusconi M. L. Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon. Cortex. 1990 Mar;26(1):123–131. doi: 10.1016/s0010-9452(13)80078-0. [DOI] [PubMed] [Google Scholar]
  64. Ventre J., Faugier-Grimaud S. Projections of the temporo-parietal cortex on vestibular complex in the macaque monkey (Macaca fascicularis). Exp Brain Res. 1988;72(3):653–658. doi: 10.1007/BF00250611. [DOI] [PubMed] [Google Scholar]
  65. Vitte E., Derosier C., Caritu Y., Berthoz A., Hasboun D., Soulié D. Activation of the hippocampal formation by vestibular stimulation: a functional magnetic resonance imaging study. Exp Brain Res. 1996 Dec;112(3):523–526. doi: 10.1007/BF00227958. [DOI] [PubMed] [Google Scholar]
  66. Whiteley A. M., Warrington E. K. Selective impairment of topographical memory: a single case study. J Neurol Neurosurg Psychiatry. 1978 Jun;41(6):575–578. doi: 10.1136/jnnp.41.6.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wiener S. I., Korshunov V. A., Garcia R., Berthoz A. Inertial, substratal and landmark cue control of hippocampal CA1 place cell activity. Eur J Neurosci. 1995 Nov 1;7(11):2206–2219. doi: 10.1111/j.1460-9568.1995.tb00642.x. [DOI] [PubMed] [Google Scholar]
  68. Zola-Morgan S., Squire L. R., Amaral D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986 Oct;6(10):2950–2967. doi: 10.1523/JNEUROSCI.06-10-02950.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES