Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Nov 29;352(1361):1565–1588. doi: 10.1098/rstb.1997.0142

Structure and function of the Nautilus statocyst.

H Neumeister 1, B U Budelmann 1
PMCID: PMC1692077  PMID: 9415917

Abstract

The two equilibrium receptor organs (statocysts) of Nautilus are avoid sacks, half-filled with numerous small, free-moving statoconia and half with endolymph. The inner surface of each statocyst is lined with 130,000-150,000 primary sensory hair cells. The hair cells are of two morphological types. Type A hair cells carry 10-15 kinocilia arranged in a single ciliary row; they are present in the ventral half of the statocyst. Type B hair cells carry 8-10 irregularly arranged kinocilia; they are present in the dorsal half of the statocyst. Both type of hair cells are morphologically polarized. To test whether these features allow the Nautilus statocyst to sense angular accelerations, behavioural experiments were performed to measure statocyst-dependent funnel movements during sinusoidal oscillations of restrained Nautilus around a vertical body axis. Such dynamic rotatory stimulation caused horizontal phase-locked movements of the funnel. The funnel movements were either in the same direction (compensatory funnel response), or in the opposite direction (funnel follow response) to that of the applied rotation. Compensatory funnel movements were also seen during optokinetic stimulation (with a black and white stripe pattern) and during stimulations in which optokinetic and statocyst stimulations were combined. These morphological and behavioural findings show that the statocysts of Nautilus, in addition to their function as gravity receptor organs, are able to detect rotatory movements (angular accelerations) without the specialized receptor systems (crista/cupula systems) that are found in the statocysts of coleoid cephalopods. The findings further indicate that both statocyst and visual inputs control compensatory funnel movements.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber V. C., Dilly P. N. Some aspects of the fine structure of the statocysts of the Molluscs Pecten and Pterotrachea. Z Zellforsch Mikrosk Anat. 1969;94(4):462–478. doi: 10.1007/BF00936053. [DOI] [PubMed] [Google Scholar]
  2. Boyle P. R. Receptor units responding to movement in the octopus mantle. J Exp Biol. 1976 Aug;65(1):1–9. doi: 10.1242/jeb.65.1.1. [DOI] [PubMed] [Google Scholar]
  3. Budelmann B. U., Barber V. C., West S. Scanning electron microscopical studies of the arrangements and numbers of hair cells in the statocysts of Octopus vulgaris, Sepia officinalis and Loligo vulgaris. Brain Res. 1973 Jun 29;56:25–41. doi: 10.1016/0006-8993(73)90325-9. [DOI] [PubMed] [Google Scholar]
  4. Budelmann B. U., Bonn U. Histochemical evidence for catecholamines as neurotransmitters in the statocyst of Octopus vulgaris. Cell Tissue Res. 1982;227(3):475–483. doi: 10.1007/BF00204779. [DOI] [PubMed] [Google Scholar]
  5. Budelmann B. U. Gravity receptor function in cephalopods with particular reference to Sepia officinalis. Fortschr Zool. 1975;23(1):84–98. [PubMed] [Google Scholar]
  6. Budelmann B. U. Hair cell polarization in the gravity receptor systems of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris. Brain Res. 1979 Jan 12;160(2):261–270. doi: 10.1016/0006-8993(79)90423-2. [DOI] [PubMed] [Google Scholar]
  7. Budelmann B. U., Thies G. Secondary sensory cells in the gravity receptor system of the statocyst of Octopus vulgaris. Cell Tissue Res. 1977 Jul 26;182(1):93–98. doi: 10.1007/BF00222057. [DOI] [PubMed] [Google Scholar]
  8. Budelmann B. U., Williamson R. Directional sensitivity of hair cell afferents in the Octopus statocyst. J Exp Biol. 1994 Feb;187:245–259. doi: 10.1242/jeb.187.1.245. [DOI] [PubMed] [Google Scholar]
  9. Chia F. S., Koss R., Bickell L. R. Fine structural study of the statocysts in the veliger larva of the nudibranch, Rostanga pulchra. Cell Tissue Res. 1981;214(1):67–80. doi: 10.1007/BF00235145. [DOI] [PubMed] [Google Scholar]
  10. Colmers W. F. Afferent synaptic connections between hair cells and the somata of intramacular neurons in the gravity receptor system of the statocyst of Octopus vulgaris. J Comp Neurol. 1981 Apr 10;197(3):385–394. doi: 10.1002/cne.901970303. [DOI] [PubMed] [Google Scholar]
  11. Flock A. Transducing mechanisms in the lateral line canal organ receptors. Cold Spring Harb Symp Quant Biol. 1965;30:133–145. doi: 10.1101/sqb.1965.030.01.016. [DOI] [PubMed] [Google Scholar]
  12. Hengstenberg R. Multisensory control in insect oculomotor systems. Rev Oculomot Res. 1993;5:285–298. [PubMed] [Google Scholar]
  13. Krisch B. Uber das Apikalorgan (Statocyste) der Ctenophore Pleurobrachia pileus. Z Zellforsch Mikrosk Anat. 1973;142(2):241–262. [PubMed] [Google Scholar]
  14. Lowenstein O., Osborne M. P., Thornhill R. A. The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc R Soc Lond B Biol Sci. 1968 Jun 11;170(1019):113–134. doi: 10.1098/rspb.1968.0029. [DOI] [PubMed] [Google Scholar]
  15. Messenger J. B., Nixon M., Ryan K. P. Magnesium chloride as an anaesthetic for cephalopods. Comp Biochem Physiol C. 1985;82(1):203–205. doi: 10.1016/0742-8413(85)90230-0. [DOI] [PubMed] [Google Scholar]
  16. Messenger J. B. Optomotor responses and nystagmus in intact, blinded and statocystless cuttlefish (Sepia officinalis L.). J Exp Biol. 1970 Dec;53(3):789–796. doi: 10.1242/jeb.53.3.789. [DOI] [PubMed] [Google Scholar]
  17. Platt C. Hair cell distribution and orientation in goldfish otolith organs. J Comp Neurol. 1977 Mar 15;172(2):283–287. doi: 10.1002/cne.901720207. [DOI] [PubMed] [Google Scholar]
  18. Popper A. N., Hoxter B. Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Brain Behav Evol. 1987;30(1-2):43–61. doi: 10.1159/000118637. [DOI] [PubMed] [Google Scholar]
  19. Preuss T., Budelmann B. U. A dorsal light reflex in a squid. J Exp Biol. 1995 May;198(Pt 5):1157–1159. doi: 10.1242/jeb.198.5.1157. [DOI] [PubMed] [Google Scholar]
  20. Preuss T., Budelmann B. U. Proprioceptive hair cells on the neck of the squid Lolliguncula brevis: a sense organ in cephalopods for the control of head-to-body position. Philos Trans R Soc Lond B Biol Sci. 1995 Aug 29;349(1328):153–178. doi: 10.1098/rstb.1995.0101. [DOI] [PubMed] [Google Scholar]
  21. Sandeman D. C., Okajima A. Statocyst-induced eye movement in the crab Scylla serrata. I. The sensory input from the statocyst. J Exp Biol. 1972 Aug;57(1):187–204. doi: 10.1242/jeb.57.1.187. [DOI] [PubMed] [Google Scholar]
  22. Stahlschmidt V., Wolff H. G. The fine structure of the statocyst of the prosobranch molluse Pomacea paludosa. Z Zellforsch Mikrosk Anat. 1972;133(4):529–537. doi: 10.1007/BF00307133. [DOI] [PubMed] [Google Scholar]
  23. Tu Y., Budelmann B. U. The effect of L-glutamate on the afferent resting activity in the cephalopod statocyst. Brain Res. 1994 Apr 11;642(1-2):47–58. doi: 10.1016/0006-8993(94)90904-0. [DOI] [PubMed] [Google Scholar]
  24. Varju D. Stationary and dynamic responses during visual edge fixation by walking insects. Nature. 1975 May 22;255(5506):330–332. doi: 10.1038/255330a0. [DOI] [PubMed] [Google Scholar]
  25. YOUNG J. Z. The statocysts of Octopus vulgaris. Proc R Soc Lond B Biol Sci. 1960 Apr 26;152:3–29. doi: 10.1098/rspb.1960.0019. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES