Abstract
Genetics offers a powerful approach to the elucidation of mechanisms underlying specific components of the senescent phenotype of our species. Perhaps thousands of gene variations have escaped the force of natural selection and thus play roles in the genesis of different patterns of ageing in man. It is possible that a subset of these genes may be of particular importance in how most people age. While variations at the Werner helicase locus could be one such example, several lines of evidence suggest that mutation at that locus leads to a 'private' mechanism of ageing. It will be important, however, to investigate polymorphisms underlying the regulation of expression of this gene in the general population. Polymorphisms (normally occurring variants of a gene, or sequence of DNA), rather than mutations, may also prove to be more relevant to our understanding of the differing susceptibilities of people to common disorders such as late onset Alzheimer's disease. Polymorphic forms of the Apolipoprotein E gene is a good example. It remains to be seen if the pathogenetic framework (beta amyloidosis) derived from studies of the several rare mutations responsible for early onset familial forms of the disease proves relevant to the pathogenesis of the vastly more prevalent sporadic forms of the disorder. In contrast to the satisfying progress on the genetics of the diseases of ageing, research on the genetic basis for unusually robust retention of structure and function in old age has been neglected and requires a higher priority for the future. Such research should include studies of environmental agents and should address mechanisms of 'sageing', a stage in the life course characterized by an extensive utilization of behavioural and physiological adaptations to compensate for functional declines. For the genetics of longevity, we have to turn to genetically tractable organisms such as nematodes and fruit flies. Such studies have provided significant support for the oxidative stress theory of ageing. It will be important to learn more about the age-related pathologies and pathophysiologies of these organisms.
Full Text
The Full Text of this article is available as a PDF (293.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1753–1756. doi: 10.1073/pnas.70.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird T. D., Lampe T. H., Nemens E. J., Sumi S. M., Nochlin D., Schellenberg G. D., Wijsman E. M. Characteristics of familial Alzheimer's disease in nine kindreds of Volga German ancestry. Prog Clin Biol Res. 1989;317:229–234. [PubMed] [Google Scholar]
- Brown W. T. Progeria: a human-disease model of accelerated aging. Am J Clin Nutr. 1992 Jun;55(6 Suppl):1222S–1224S. doi: 10.1093/ajcn/55.6.1222S. [DOI] [PubMed] [Google Scholar]
- Coleman P. D., Rogers K. E., Flood D. G. Neuronal plasticity in normal aging and deficient plasticity in Alzheimer's disease: a proposed intercellular signal cascade. Prog Brain Res. 1990;86:75–87. doi: 10.1016/s0079-6123(08)63168-4. [DOI] [PubMed] [Google Scholar]
- Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., Roses A. D., Haines J. L., Pericak-Vance M. A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993 Aug 13;261(5123):921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
- Engel S. A. Looking into the black box: new directions in neuroimaging. Neuron. 1996 Sep;17(3):375–378. doi: 10.1016/s0896-6273(00)80170-1. [DOI] [PubMed] [Google Scholar]
- Epstein C. J., Martin G. M., Schultz A. L., Motulsky A. G. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 1966 May;45(3):177–221. doi: 10.1097/00005792-196605000-00001. [DOI] [PubMed] [Google Scholar]
- Flood D. G., Buell S. J., Defiore C. H., Horwitz G. J., Coleman P. D. Age-related dendritic growth in dentate gyrus of human brain is followed by regression in the 'oldest old'. Brain Res. 1985 Oct 21;345(2):366–368. doi: 10.1016/0006-8993(85)91018-2. [DOI] [PubMed] [Google Scholar]
- Fukuchi K., Martin G. M., Monnat R. J., Jr Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5893–5897. doi: 10.1073/pnas.86.15.5893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuchi K., Tanaka K., Kumahara Y., Marumo K., Pride M. B., Martin G. M., Monnat R. J., Jr Increased frequency of 6-thioguanine-resistant peripheral blood lymphocytes in Werner syndrome patients. Hum Genet. 1990 Feb;84(3):249–252. doi: 10.1007/BF00200569. [DOI] [PubMed] [Google Scholar]
- Goate A., Chartier-Harlin M. C., Mullan M., Brown J., Crawford F., Fidani L., Giuffra L., Haynes A., Irving N., James L. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991 Feb 21;349(6311):704–706. doi: 10.1038/349704a0. [DOI] [PubMed] [Google Scholar]
- Goto M., Kindynis P., Resnick D., Sartoris D. J. Osteosclerosis of the phalanges in Werner syndrome. Radiology. 1989 Sep;172(3):841–843. doi: 10.1148/radiology.172.3.2772198. [DOI] [PubMed] [Google Scholar]
- Goto M., Miller R. W., Ishikawa Y., Sugano H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev. 1996 Apr;5(4):239–246. [PubMed] [Google Scholar]
- Goto M., Rubenstein M., Weber J., Woods K., Drayna D. Genetic linkage of Werner's syndrome to five markers on chromosome 8. Nature. 1992 Feb 20;355(6362):735–738. doi: 10.1038/355735a0. [DOI] [PubMed] [Google Scholar]
- Goto M., Tanimoto K., Horiuchi Y., Sasazuki T. Family analysis of Werner's syndrome: a survey of 42 Japanese families with a review of the literature. Clin Genet. 1981 Jan;19(1):8–15. doi: 10.1111/j.1399-0004.1981.tb00660.x. [DOI] [PubMed] [Google Scholar]
- Hardy D. O., Scher H. I., Bogenreider T., Sabbatini P., Zhang Z. F., Nanus D. M., Catterall J. F. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab. 1996 Dec;81(12):4400–4405. doi: 10.1210/jcem.81.12.8954049. [DOI] [PubMed] [Google Scholar]
- Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 1997 Apr;20(4):154–159. doi: 10.1016/s0166-2236(96)01030-2. [DOI] [PubMed] [Google Scholar]
- Hiltunen T., Kiuru S., Hongell V., Heliö T., Palo J., Peltonen L. Finnish type of familial amyloidosis: cosegregation of Asp187----Asn mutation of gelsolin with the disease in three large families. Am J Hum Genet. 1991 Sep;49(3):522–528. [PMC free article] [PubMed] [Google Scholar]
- Hoehn H., Bryant E. M., Au K., Norwood T. H., Boman H., Martin G. M. Variegated translocation mosaicism in human skin fibroblast cultures. Cytogenet Cell Genet. 1975;15(5):282–298. doi: 10.1159/000130526. [DOI] [PubMed] [Google Scholar]
- Ingles S. A., Ross R. K., Yu M. C., Irvine R. A., La Pera G., Haile R. W., Coetzee G. A. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst. 1997 Jan 15;89(2):166–170. doi: 10.1093/jnci/89.2.166. [DOI] [PubMed] [Google Scholar]
- Kirkwood T. B., Rose M. R. Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci. 1991 Apr 29;332(1262):15–24. doi: 10.1098/rstb.1991.0028. [DOI] [PubMed] [Google Scholar]
- Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
- Levy-Lahad E., Wasco W., Poorkaj P., Romano D. M., Oshima J., Pettingell W. H., Yu C. E., Jondro P. D., Schmidt S. D., Wang K. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 1995 Aug 18;269(5226):973–977. doi: 10.1126/science.7638622. [DOI] [PubMed] [Google Scholar]
- Marsden C. D., Jenner P. G. The significance of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Ciba Found Symp. 1987;126:239–256. doi: 10.1002/9780470513422.ch15. [DOI] [PubMed] [Google Scholar]
- Martin G. M., Austad S. N., Johnson T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet. 1996 May;13(1):25–34. doi: 10.1038/ng0596-25. [DOI] [PubMed] [Google Scholar]
- Martin G. M. Interactions of aging and environmental agents: the gerontological perspective. Prog Clin Biol Res. 1987;228:25–80. [PubMed] [Google Scholar]
- Martin G. M., Sprague C. A., Epstein C. J. Replicative life-span of cultivated human cells. Effects of donor's age, tissue, and genotype. Lab Invest. 1970 Jul;23(1):86–92. [PubMed] [Google Scholar]
- Martin G. M. Syndromes of accelerated aging. Natl Cancer Inst Monogr. 1982;60:241–247. [PubMed] [Google Scholar]
- Masliah E., Terry R. D., Alford M., DeTeresa R., Hansen L. A. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease. Am J Pathol. 1991 Jan;138(1):235–246. [PMC free article] [PubMed] [Google Scholar]
- Masoro E. J. Dietary restriction. Exp Gerontol. 1995 May-Aug;30(3-4):291–298. doi: 10.1016/0531-5565(94)00028-2. [DOI] [PubMed] [Google Scholar]
- Meretoja J. Genetic aspects of familial amyloidosis with corneal lattice dystrophy and cranial neuropathy. Clin Genet. 1973;4(3):173–185. doi: 10.1111/j.1399-0004.1973.tb01140.x. [DOI] [PubMed] [Google Scholar]
- Morgan D. G., May P. C., Finch C. E. Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegenerative disease. J Am Geriatr Soc. 1987 Apr;35(4):334–345. doi: 10.1111/j.1532-5415.1987.tb04641.x. [DOI] [PubMed] [Google Scholar]
- Oshima J., Brown W. T., Martin G. M. No detectable mutations at Werner helicase locus in progeria. Lancet. 1996 Oct 19;348(9034):1106–1106. doi: 10.1016/S0140-6736(05)64456-X. [DOI] [PubMed] [Google Scholar]
- Oshima J., Campisi J., Tannock T. C., Martin G. M. Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J Cell Physiol. 1995 Feb;162(2):277–283. doi: 10.1002/jcp.1041620213. [DOI] [PubMed] [Google Scholar]
- Oshima J., Yu C. E., Piussan C., Klein G., Jabkowski J., Balci S., Miki T., Nakura J., Ogihara T., Ells J. Homozygous and compound heterozygous mutations at the Werner syndrome locus. Hum Mol Genet. 1996 Dec;5(12):1909–1913. doi: 10.1093/hmg/5.12.1909. [DOI] [PubMed] [Google Scholar]
- Polymeropoulos M. H., Schaffer A. A. Scanning the genome with 1772 microsatellite markers in search of a bipolar disorder susceptibility gene. Mol Psychiatry. 1996 Nov;1(5):404–407. [PubMed] [Google Scholar]
- Poot M., Hoehn H., Rünger T. M., Martin G. M. Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp Cell Res. 1992 Oct;202(2):267–273. doi: 10.1016/0014-4827(92)90074-i. [DOI] [PubMed] [Google Scholar]
- Risch N. J., Zhang H. Mapping quantitative trait loci with extreme discordant sib pairs: sampling considerations. Am J Hum Genet. 1996 Apr;58(4):836–843. [PMC free article] [PubMed] [Google Scholar]
- Rünger T. M., Bauer C., Dekant B., Möller K., Sobotta P., Czerny C., Poot M., Martin G. M. Hypermutable ligation of plasmid DNA ends in cells from patients with Werner syndrome. J Invest Dermatol. 1994 Jan;102(1):45–48. doi: 10.1111/1523-1747.ep12371730. [DOI] [PubMed] [Google Scholar]
- Salk D., Au K., Hoehn H., Martin G. M. Cytogenetics of Werner's syndrome cultured skin fibroblasts: variegated translocation mosaicism. Cytogenet Cell Genet. 1981;30(2):92–107. doi: 10.1159/000131596. [DOI] [PubMed] [Google Scholar]
- Schellenberg G. D., Martin G. M., Wijsman E. M., Nakura J., Miki T., Ogihara T. Homozygosity mapping and Werner's syndrome. Lancet. 1992 Apr 18;339(8799):1002–1002. doi: 10.1016/0140-6736(92)91590-5. [DOI] [PubMed] [Google Scholar]
- Schulz V. P., Zakian V. A., Ogburn C. E., McKay J., Jarzebowicz A. A., Edland S. D., Martin G. M. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum Genet. 1996 Jun;97(6):750–754. doi: 10.1007/BF02346184. [DOI] [PubMed] [Google Scholar]
- Selkoe D. J. Alzheimer's disease. Missense on the membrane. Nature. 1995 Jun 29;375(6534):734–735. doi: 10.1038/375734a0. [DOI] [PubMed] [Google Scholar]
- Stanford J. L., Just J. J., Gibbs M., Wicklund K. G., Neal C. L., Blumenstein B. A., Ostrander E. A. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res. 1997 Mar 15;57(6):1194–1198. [PubMed] [Google Scholar]
- Takeuchi F., Hanaoka F., Goto M., Yamada M., Miyamoto T. Prolongation of S phase and whole cell cycle in Werner's syndrome fibroblasts. Exp Gerontol. 1982;17(6):473–480. doi: 10.1016/s0531-5565(82)80009-0. [DOI] [PubMed] [Google Scholar]
- Ye L., Miki T., Nakura J., Oshima J., Kamino K., Rakugi H., Ikegami H., Higaki J., Edland S. D., Martin G. M. Association of a polymorphic variant of the Werner helicase gene with myocardial infarction in a Japanese population. Am J Med Genet. 1997 Feb 11;68(4):494–498. doi: 10.1002/(sici)1096-8628(19970211)68:4<494::aid-ajmg30>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- Yu B. P., Yang R. Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann N Y Acad Sci. 1996 Jun 15;786:1–11. doi: 10.1111/j.1749-6632.1996.tb39047.x. [DOI] [PubMed] [Google Scholar]
- Yu C. E., Oshima J., Fu Y. H., Wijsman E. M., Hisama F., Alisch R., Matthews S., Nakura J., Miki T., Ouais S. Positional cloning of the Werner's syndrome gene. Science. 1996 Apr 12;272(5259):258–262. doi: 10.1126/science.272.5259.258. [DOI] [PubMed] [Google Scholar]
- Yu C. E., Oshima J., Wijsman E. M., Nakura J., Miki T., Piussan C., Matthews S., Fu Y. H., Mulligan J., Martin G. M. Mutations in the consensus helicase domains of the Werner syndrome gene. Werner's Syndrome Collaborative Group. Am J Hum Genet. 1997 Feb;60(2):330–341. [PMC free article] [PubMed] [Google Scholar]
- Zhang H., Risch N. Mapping quantitative-trait loci in humans by use of extreme concordant sib pairs: selected sampling by parental phenotypes. Am J Hum Genet. 1996 Oct;59(4):951–957. [PMC free article] [PubMed] [Google Scholar]