Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Feb 28;353(1366):177–186. doi: 10.1098/rstb.1998.0200

Factors affecting levels of genetic diversity in natural populations.

W Amos 1, J Harwood 1
PMCID: PMC1692205  PMID: 9533122

Abstract

Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be envisioned in which the process could provide intrinsic impetus to speciation.

Full Text

The Full Text of this article is available as a PDF (218.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen B. S., Ostrer H. Conservation of human Y chromosome sequences among male great apes: implications for the evolution of Y chromosomes. J Mol Evol. 1994 Jul;39(1):13–21. doi: 10.1007/BF00178245. [DOI] [PubMed] [Google Scholar]
  2. Amos B., Schlötterer C., Tautz D. Social structure of pilot whales revealed by analytical DNA profiling. Science. 1993 Apr 30;260(5108):670–672. doi: 10.1126/science.8480176. [DOI] [PubMed] [Google Scholar]
  3. Amos W., Rubinstzein D. C. Microsatellites are subject to directional evolution. Nat Genet. 1996 Jan;12(1):13–14. doi: 10.1038/ng0196-13. [DOI] [PubMed] [Google Scholar]
  4. Amos W., Sawcer S. J., Feakes R. W., Rubinsztein D. C. Microsatellites show mutational bias and heterozygote instability. Nat Genet. 1996 Aug;13(4):390–391. doi: 10.1038/ng0896-390. [DOI] [PubMed] [Google Scholar]
  5. Avise J. C., Bowen B. W., Lamb T. DNA fingerprints from hypervariable mitochondrial genotypes. Mol Biol Evol. 1989 May;6(3):258–269. doi: 10.1093/oxfordjournals.molbev.a040546. [DOI] [PubMed] [Google Scholar]
  6. Baker S. M., Bronner C. E., Zhang L., Plug A. W., Robatzek M., Warren G., Elliott E. A., Yu J., Ashley T., Arnheim N. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 1995 Jul 28;82(2):309–319. doi: 10.1016/0092-8674(95)90318-6. [DOI] [PubMed] [Google Scholar]
  7. Baker S. M., Plug A. W., Prolla T. A., Bronner C. E., Harris A. C., Yao X., Christie D. M., Monell C., Arnheim N., Bradley A. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet. 1996 Jul;13(3):336–342. doi: 10.1038/ng0796-336. [DOI] [PubMed] [Google Scholar]
  8. Banchs I., Bosch A., Guimerà J., Lázaro C., Puig A., Estivill X. New alleles at microsatellite loci in CEPH families mainly arise from somatic mutations in the lymphoblastoid cell lines. Hum Mutat. 1994;3(4):365–372. doi: 10.1002/humu.1380030407. [DOI] [PubMed] [Google Scholar]
  9. Barrett S. C., Charlesworth D. Effects of a change in the level of inbreeding on the genetic load. Nature. 1991 Aug 8;352(6335):522–524. doi: 10.1038/352522a0. [DOI] [PubMed] [Google Scholar]
  10. Borts R. H., Haber J. E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. doi: 10.1093/genetics/123.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Borts R. H., Leung W. Y., Kramer W., Kramer B., Williamson M., Fogel S., Haber J. E. Mismatch repair-induced meiotic recombination requires the pms1 gene product. Genetics. 1990 Mar;124(3):573–584. doi: 10.1093/genetics/124.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Burrows W., Ryder O. A. Y-chromosome variation in great apes. Nature. 1997 Jan 9;385(6612):125–126. doi: 10.1038/385125a0. [DOI] [PubMed] [Google Scholar]
  13. Caro T. M., Laurenson M. K. Ecological and genetic factors in conservation: a cautionary tale. Science. 1994 Jan 28;263(5146):485–486. doi: 10.1126/science.8290956. [DOI] [PubMed] [Google Scholar]
  14. Carpenter A. T. Chiasma function. Cell. 1994 Jul 1;77(7):957–962. doi: 10.1016/0092-8674(94)90434-0. [DOI] [PubMed] [Google Scholar]
  15. Chambers S. R., Hunter N., Louis E. J., Borts R. H. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol Cell Biol. 1996 Nov;16(11):6110–6120. doi: 10.1128/mcb.16.11.6110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Charlesworth B., Charlesworth D., Hnilicka J., Yu A., Guttman D. S. Lack of degeneration of loci on the neo-Y chromosome of Drosophila americana americana. Genetics. 1997 Apr;145(4):989–1002. doi: 10.1093/genetics/145.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Charlesworth B. The evolution of sex chromosomes. Science. 1991 Mar 1;251(4997):1030–1033. doi: 10.1126/science.1998119. [DOI] [PubMed] [Google Scholar]
  18. Chesser R. K. Influence of gene flow and breeding tactics on gene diversity within populations. Genetics. 1991 Oct;129(2):573–583. doi: 10.1093/genetics/129.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Collins I., Newlon C. S. Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell. 1994 Jan 14;76(1):65–75. doi: 10.1016/0092-8674(94)90173-2. [DOI] [PubMed] [Google Scholar]
  20. Cooper G., Amos W., Hoffman D., Rubinsztein D. C. Network analysis of human Y microsatellite haplotypes. Hum Mol Genet. 1996 Nov;5(11):1759–1766. doi: 10.1093/hmg/5.11.1759. [DOI] [PubMed] [Google Scholar]
  21. Crawford A. M., Cuthbertson R. P. Mutations in sheep microsatellites. Genome Res. 1996 Sep;6(9):876–879. doi: 10.1101/gr.6.9.876. [DOI] [PubMed] [Google Scholar]
  22. Crow J. F. Genes that violate Mendel's rules. Sci Am. 1979 Feb;240(2):134-43, 146. doi: 10.1038/scientificamerican0279-134. [DOI] [PubMed] [Google Scholar]
  23. Davis A. W., Wu C. I. The broom of the sorcerer's apprentice: the fine structure of a chromosomal region causing reproductive isolation between two sibling species of Drosophila. Genetics. 1996 Jul;143(3):1287–1298. doi: 10.1093/genetics/143.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Djian P., Hancock J. M., Chana H. S. Codon repeats in genes associated with human diseases: fewer repeats in the genes of nonhuman primates and nucleotide substitutions concentrated at the sites of reiteration. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):417–421. doi: 10.1073/pnas.93.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Dorit R. L., Akashi H., Gilbert W. Absence of polymorphism at the ZFY locus on the human Y chromosome. Science. 1995 May 26;268(5214):1183–1185. doi: 10.1126/science.7761836. [DOI] [PubMed] [Google Scholar]
  26. Duyao M., Ambrose C., Myers R., Novelletto A., Persichetti F., Frontali M., Folstein S., Ross C., Franz M., Abbott M. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993 Aug;4(4):387–392. doi: 10.1038/ng0893-387. [DOI] [PubMed] [Google Scholar]
  27. Edwards A., Hammond H. A., Jin L., Caskey C. T., Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. doi: 10.1016/0888-7543(92)90371-x. [DOI] [PubMed] [Google Scholar]
  28. Ellegren H., Moore S., Robinson N., Byrne K., Ward W., Sheldon B. C. Microsatellite evolution--a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol. 1997 Aug;14(8):854–860. doi: 10.1093/oxfordjournals.molbev.a025826. [DOI] [PubMed] [Google Scholar]
  29. Ellegren H., Primmer C. R., Sheldon B. C. Microsatellite 'evolution': directionality or bias? Nat Genet. 1995 Dec;11(4):360–362. doi: 10.1038/ng1295-360. [DOI] [PubMed] [Google Scholar]
  30. Gilbert D. A., Lehman N., O'Brien S. J., Wayne R. K. Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature. 1990 Apr 19;344(6268):764–767. doi: 10.1038/344764a0. [DOI] [PubMed] [Google Scholar]
  31. Gilbert D. A., Packer C., Pusey A. E., Stephens J. C., O'Brien S. J. Analytical DNA fingerprinting in lions: parentage, genetic diversity, and kinship. J Hered. 1991 Sep-Oct;82(5):378–386. doi: 10.1093/oxfordjournals.jhered.a111107. [DOI] [PubMed] [Google Scholar]
  32. Gordenin D. A., Kunkel T. A., Resnick M. A. Repeat expansion--all in a flap? Nat Genet. 1997 Jun;16(2):116–118. doi: 10.1038/ng0697-116. [DOI] [PubMed] [Google Scholar]
  33. Graves J. A. The origin and function of the mammalian Y chromosome and Y-borne genes--an evolving understanding. Bioessays. 1995 Apr;17(4):311–320. doi: 10.1002/bies.950170407. [DOI] [PubMed] [Google Scholar]
  34. Gray I. C., Jeffreys A. J. Evolutionary transience of hypervariable minisatellites in man and the primates. Proc Biol Sci. 1991 Mar 22;243(1308):241–253. doi: 10.1098/rspb.1991.0038. [DOI] [PubMed] [Google Scholar]
  35. Hammer M. F. A recent common ancestry for human Y chromosomes. Nature. 1995 Nov 23;378(6555):376–378. doi: 10.1038/378376a0. [DOI] [PubMed] [Google Scholar]
  36. Hedrick P. W. Elephant seals and the estimation of a population bottleneck. J Hered. 1995 May-Jun;86(3):232–235. doi: 10.1093/oxfordjournals.jhered.a111568. [DOI] [PubMed] [Google Scholar]
  37. Hedrick P. W. Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity (Edinb) 1994 Oct;73(Pt 4):363–372. doi: 10.1038/hdy.1994.183. [DOI] [PubMed] [Google Scholar]
  38. Hoelzel A. R., Halley J., O'Brien S. J., Campagna C., Arnbom T., Le Boeuf B., Ralls K., Dover G. A. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks. J Hered. 1993 Nov-Dec;84(6):443–449. doi: 10.1093/oxfordjournals.jhered.a111370. [DOI] [PubMed] [Google Scholar]
  39. Hoffman S. M., Brown W. M. The molecular mechanism underlying the "rare allele phenomenon" in a subspecific hybrid zone of the California field mouse, Peromyscus californicus. J Mol Evol. 1995 Dec;41(6):1165–1169. doi: 10.1007/BF00173198. [DOI] [PubMed] [Google Scholar]
  40. Hurst L. D. Further evidence consistent with Stellate's involvement in meiotic drive. Genetics. 1996 Feb;142(2):641–643. doi: 10.1093/genetics/142.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hurst L. D. Is Stellate a relict meiotic driver? Genetics. 1992 Jan;130(1):229–230. doi: 10.1093/genetics/130.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Jeffreys A. J., Tamaki K., MacLeod A., Monckton D. G., Neil D. L., Armour J. A. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet. 1994 Feb;6(2):136–145. doi: 10.1038/ng0294-136. [DOI] [PubMed] [Google Scholar]
  43. Jobling M. A., Tyler-Smith C. Fathers and sons: the Y chromosome and human evolution. Trends Genet. 1995 Nov;11(11):449–456. doi: 10.1016/s0168-9525(00)89144-1. [DOI] [PubMed] [Google Scholar]
  44. Johnson N. A., Wu C. I. An empirical test of the meiotic drive models of hybrid sterility: sex-ratio data from hybrids between Drosophila simulans and Drosophila sechellia. Genetics. 1992 Mar;130(3):507–511. doi: 10.1093/genetics/130.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Manivasakam P., Rosenberg S. M., Hastings P. J. Poorly repaired mismatches in heteroduplex DNA are hyper-recombinagenic in Saccharomyces cerevisiae. Genetics. 1996 Feb;142(2):407–416. doi: 10.1093/genetics/142.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Meyer E., Wiegand P., Rand S. P., Kuhlmann D., Brack M., Brinkmann B. Microsatellite polymorphisms reveal phylogenetic relationships in primates. J Mol Evol. 1995 Jul;41(1):10–14. doi: 10.1007/BF00174036. [DOI] [PubMed] [Google Scholar]
  47. Monckton D. G., Neumann R., Guram T., Fretwell N., Tamaki K., MacLeod A., Jeffreys A. J. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat Genet. 1994 Oct;8(2):162–170. doi: 10.1038/ng1094-162. [DOI] [PubMed] [Google Scholar]
  48. Morell V. Rise and fall of the Y chromosome. Science. 1994 Jan 14;263(5144):171–172. doi: 10.1126/science.8284667. [DOI] [PubMed] [Google Scholar]
  49. Nag D. K., Scherthan H., Rockmill B., Bhargava J., Roeder G. S. Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants. Genetics. 1995 Sep;141(1):75–86. doi: 10.1093/genetics/141.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. O'Brien S. J. A role for molecular genetics in biological conservation. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5748–5755. doi: 10.1073/pnas.91.13.5748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Pitnick S., Spicer G. S., Markow T. A. How long is a giant sperm? Nature. 1995 May 11;375(6527):109–109. doi: 10.1038/375109a0. [DOI] [PubMed] [Google Scholar]
  52. Primmer C. R., Saino N., Møller A. P., Ellegren H. Directional evolution in germline microsatellite mutations. Nat Genet. 1996 Aug;13(4):391–393. doi: 10.1038/ng0896-391. [DOI] [PubMed] [Google Scholar]
  53. Rice W. R. Degeneration of a nonrecombining chromosome. Science. 1994 Jan 14;263(5144):230–232. doi: 10.1126/science.8284674. [DOI] [PubMed] [Google Scholar]
  54. Rohani P., May R. M., Hassell M. P. Metapopulations and equilibrium stability: the effects of spatial structure. J Theor Biol. 1996 Jul 21;181(2):97–109. doi: 10.1006/jtbi.1996.0118. [DOI] [PubMed] [Google Scholar]
  55. Rubinsztein D. C., Amos W., Leggo J., Goodburn S., Jain S., Li S. H., Margolis R. L., Ross C. A., Ferguson-Smith M. A. Microsatellite evolution--evidence for directionality and variation in rate between species. Nat Genet. 1995 Jul;10(3):337–343. doi: 10.1038/ng0795-337. [DOI] [PubMed] [Google Scholar]
  56. Rubinsztein D. C., Amos W., Leggo J., Goodburn S., Ramesar R. S., Old J., Bontrop R., McMahon R., Barton D. E., Ferguson-Smith M. A. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nat Genet. 1994 Aug;7(4):525–530. doi: 10.1038/ng0894-525. [DOI] [PubMed] [Google Scholar]
  57. Schug M. D., Mackay T. F., Aquadro C. F. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nat Genet. 1997 Jan;15(1):99–102. doi: 10.1038/ng0197-99. [DOI] [PubMed] [Google Scholar]
  58. Sniegowski P. D., Gerrish P. J., Lenski R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature. 1997 Jun 12;387(6634):703–705. doi: 10.1038/42701. [DOI] [PubMed] [Google Scholar]
  59. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  60. Tucker P. K., Lundrigan B. L. Rapid evolution of the sex determining locus in Old World mice and rats. Nature. 1993 Aug 19;364(6439):715–717. doi: 10.1038/364715a0. [DOI] [PubMed] [Google Scholar]
  61. Waples R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989 Feb;121(2):379–391. doi: 10.1093/genetics/121.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  63. Whitfield L. S., Lovell-Badge R., Goodfellow P. N. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature. 1993 Aug 19;364(6439):713–715. doi: 10.1038/364713a0. [DOI] [PubMed] [Google Scholar]
  64. Whitfield L. S., Sulston J. E., Goodfellow P. N. Sequence variation of the human Y chromosome. Nature. 1995 Nov 23;378(6555):379–380. doi: 10.1038/378379a0. [DOI] [PubMed] [Google Scholar]
  65. Wise C. A., Sraml M., Rubinsztein D. C., Easteal S. Comparative nuclear and mitochondrial genome diversity in humans and chimpanzees. Mol Biol Evol. 1997 Jul;14(7):707–716. doi: 10.1093/oxfordjournals.molbev.a025810. [DOI] [PubMed] [Google Scholar]
  66. van Treuren R., Kuittinen H., Kärkkäinen K., Baena-Gonzalez E., Savolainen O. Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol. 1997 Mar;14(3):220–229. doi: 10.1093/oxfordjournals.molbev.a025758. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES