Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Apr 29;353(1368):607–617. doi: 10.1098/rstb.1998.0229

Base-compositional biases and the bat problem. III. The questions of microchiropteran monophyly.

J M Hutcheon 1, J A Kirsch 1, J D Pettigrew 1
PMCID: PMC1692242  PMID: 9602535

Abstract

Using single-copy DNA hybridization, we carried out a whole genome study of 16 bats (from ten families) and five outgroups (two primates and one each dermopteran, scandentian, and marsupial). Three of the bat species represented as many families of Rhinolophoidea, and these always associated with the two representatives of Pteropodidae. All other microchiropterans, however, formed a monophyletic unit displaying interrelationships largely in accord with current opinion. Thus noctilionoids comprised one clade, while vespertilionids, emballonurids, and molossids comprised three others, successively more closely related in that sequence. The unexpected position of rhinolophoids may be due either to the high AT bias they share with pteropodids, or it may be phylogenetically authentic. Reanalysis of the data with varying combinations of the five outgroups does not indicate a rooting problem, and the inclusion of many bat lineages divided at varying levels similarly discounts long branch attraction as an explanation for the pteropodid-rhinolophoid association. If rhinolophoids are indeed specially related to pteropodids, many synapomorphies of Microchiroptera are called into question, not least the unitary evolution of echolocation (although this feature may simply have been lost in pteropodids). Further, a rhinolophoid-pteropodid relationship--if true--has serious implications for the classification of bats. Finally, among the outgroups, an apparent sister-group relation of Dermoptera and Primates suggests that flying lemurs do not represent the ancestors of some or all bats; yet, insofar as gliding of the type implemented in dermopterans is an appropriate model for the evolution of powered mammalian flying, the position of Cynocephalus in our tree indirectly strengthens the argument that true flight could have evolved more than once among bats.

Full Text

The Full Text of this article is available as a PDF (257.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey W. J., Slightom J. L., Goodman M. Rejection of the "flying primate" hypothesis by phylogenetic evidence from the epsilon-globin gene. Science. 1992 Apr 3;256(5053):86–89. doi: 10.1126/science.1301735. [DOI] [PubMed] [Google Scholar]
  2. Bleiweiss R., Kirsch J. A., Matheus J. C. DNA hybridization evidence for the principal lineages of hummingbirds (Aves:Trochilidae). Mol Biol Evol. 1997 Mar;14(3):325–343. doi: 10.1093/oxfordjournals.molbev.a025767. [DOI] [PubMed] [Google Scholar]
  3. Cavalli-Sforza L. L., Edwards A. W. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet. 1967 May;19(3 Pt 1):233–257. [PMC free article] [PubMed] [Google Scholar]
  4. Fox G. M., Schmid C. W. Related single copy sequences in the human genome. Biochim Biophys Acta. 1980 Oct 17;609(3):349–363. doi: 10.1016/0005-2787(80)90109-4. [DOI] [PubMed] [Google Scholar]
  5. Janke A., Feldmaier-Fuchs G., Thomas W. K., von Haeseler A., Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256. doi: 10.1093/genetics/137.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Janke A., Gemmell N. J., Feldmaier-Fuchs G., von Haeseler A., Päbo S. The mitochondrial genome of a monotreme--the platypus (Ornithorhynchus anatinus). J Mol Evol. 1996 Feb;42(2):153–159. doi: 10.1007/BF02198841. [DOI] [PubMed] [Google Scholar]
  7. Jepsen G. L. Early eocene bat from wyoming. Science. 1966 Dec 9;154(3754):1333–1339. doi: 10.1126/science.154.3754.1333. [DOI] [PubMed] [Google Scholar]
  8. Kirsch J. A., Pettigrew J. D. Base-compositional biases and the bat problem. II. DNA-hybridization trees based on AT- and GC-enriched tracers. Philos Trans R Soc Lond B Biol Sci. 1998 Mar 29;353(1367):381–388. doi: 10.1098/rstb.1998.0216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirsch J. A., Springer M. S., Krajewski C., Archer M., Aplin K., Dickerman A. W. DNA/DNA hybridization studies of the carnivorous marsupials. I: The intergeneric relationships of bandicoots (Marsupialia: Perameloidea). J Mol Evol. 1990 May;30(5):434–448. doi: 10.1007/BF02101115. [DOI] [PubMed] [Google Scholar]
  10. Lapointe F. J., Kirsch J. A., Bleiweiss R. Jackknifing of weighted trees: validation of phylogenies reconstructed from distance matrices. Mol Phylogenet Evol. 1994 Sep;3(3):256–267. doi: 10.1006/mpev.1994.1028. [DOI] [PubMed] [Google Scholar]
  11. Marshall C. R. Statistical tests and bootstrapping: assessing the reliability of phylogenies based on distance data. Mol Biol Evol. 1991 May;8(3):386–391. doi: 10.1093/oxfordjournals.molbev.a040655. [DOI] [PubMed] [Google Scholar]
  12. Novacek M. J. Evidence for echolocation in the oldest known bats. Nature. 1985 May 9;315(6015):140–141. doi: 10.1038/315140a0. [DOI] [PubMed] [Google Scholar]
  13. Pettigrew J. D. Flying primates? Megabats have the advanced pathway from eye to midbrain. Science. 1986 Mar 14;231(4743):1304–1306. doi: 10.1126/science.3945827. [DOI] [PubMed] [Google Scholar]
  14. Pettigrew J. D. Genomic evolution. Flying DNA. Curr Biol. 1994 Mar 1;4(3):277–280. doi: 10.1016/s0960-9822(00)00065-8. [DOI] [PubMed] [Google Scholar]
  15. Pettigrew J. D., Jamieson B. G., Robson S. K., Hall L. S., McAnally K. I., Cooper H. M. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Philos Trans R Soc Lond B Biol Sci. 1989 Nov 30;325(1229):489–559. doi: 10.1098/rstb.1989.0102. [DOI] [PubMed] [Google Scholar]
  16. Pettigrew J. D., Kirsch A. W. Base-compositional biases and the bat problem. I. DNA-hybridization melting curves based on AT- and GC-enriched tracers. Philos Trans R Soc Lond B Biol Sci. 1998 Mar 29;353(1367):369–379. doi: 10.1098/rstb.1998.0215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Porter C. A., Goodman M., Stanhope M. J. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol Phylogenet Evol. 1996 Feb;5(1):89–101. doi: 10.1006/mpev.1996.0008. [DOI] [PubMed] [Google Scholar]
  18. Rosa M. G., Pettigrew J. D., Cooper H. M. Unusual pattern of retinogeniculate projections in the controversial primate Tarsius. Brain Behav Evol. 1996;48(3):121–129. doi: 10.1159/000113191. [DOI] [PubMed] [Google Scholar]
  19. Thewissen J. G., Babcock S. K. Distinctive cranial and cervical innervation of wing muscles: new evidence for bat monophyly. Science. 1991 Feb 22;251(4996):934–936. doi: 10.1126/science.2000493. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES