Abstract
The ability to process damaged DNA may vary between cells depending on their differentiated status. However, there is little in vivo data available and it is not intuitively obvious how the activity of specific repair pathways may vary between different subpopulations (e.g. stem cells and proliferative, committed and differentiated cells) of a particular tissue. To obtain such information for the intestinal epithelium, we have developed an assay that detects differences in the way different regions of the crypt (stem, proliferative and maturation zones) respond to DNA damage. The assay is a variant of the 'comet' assay, which detects DNA strand breaks by measuring the proportion of DNA migrating from individual cells, or in this case intact isolated crypts, in an electrophoretic field. The method is quantitative, with the amount of migrating DNA being proportional to the number of strand breaks. Isolated crypts are repair competent and spatial differences are apparent with some agents. The assay has the potential to characterize the repair properties of cells at different stages of differentiation within the crypt, determine the characteristics that might predispose them to damage and may help in understanding the route of stem cell mutation.
Full Text
The Full Text of this article is available as a PDF (233.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Dewachi H. S., Wright N. A., Appleton D. R., Watson A. J. Cell population kinetics in the mouse jejunal crypt. Virchows Arch B Cell Pathol. 1975 Jul 18;18(3):225–242. doi: 10.1007/BF02889250. [DOI] [PubMed] [Google Scholar]
- Bjerknes M., Cheng H. The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am J Anat. 1981 Jan;160(1):51–63. doi: 10.1002/aja.1001600105. [DOI] [PubMed] [Google Scholar]
- Bjerknes M., Cheng H. The stem-cell zone of the small intestinal epithelium. II. Evidence from paneth cells in the newborn mouse. Am J Anat. 1981 Jan;160(1):65–75. doi: 10.1002/aja.1001600106. [DOI] [PubMed] [Google Scholar]
- Brooks R. A., Gooderham N. J., Zhao K., Edwards R. J., Howard L. A., Boobis A. R., Winton D. J. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is a potent mutagen in the mouse small intestine. Cancer Res. 1994 Apr 1;54(7):1665–1671. [PubMed] [Google Scholar]
- Brooks R. A., Winton D. J. Determination of spatial patterns of DNA damage and repair in intestinal crypts by multi-cell gel electrophoresis. J Cell Sci. 1996 Aug;109(Pt 8):2061–2068. doi: 10.1242/jcs.109.8.2061. [DOI] [PubMed] [Google Scholar]
- Clarke A. R., Gledhill S., Hooper M. L., Bird C. C., Wyllie A. H. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene. 1994 Jun;9(6):1767–1773. [PubMed] [Google Scholar]
- Fu K. K., Phillips T. L., Kane L. J., Smith V. Tumor and normal tissue response to irradiation in vivo: variation with decreasing dose rates. Radiology. 1975 Mar;114(3):709–716. doi: 10.1148/114.3.709. [DOI] [PubMed] [Google Scholar]
- Gedik C. M., Ewen S. W., Collins A. R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int J Radiat Biol. 1992 Sep;62(3):313–320. doi: 10.1080/09553009214552161. [DOI] [PubMed] [Google Scholar]
- Green M. H., Lowe J. E., Harcourt S. A., Akinluyi P., Rowe T., Cole J., Anstey A. V., Arlett C. F. UV-C sensitivity of unstimulated and stimulated human lymphocytes from normal and xeroderma pigmentosum donors in the comet assay: a potential diagnostic technique. Mutat Res. 1992 Mar;273(2):137–144. doi: 10.1016/0921-8777(92)90075-e. [DOI] [PubMed] [Google Scholar]
- Harvey M., McArthur M. J., Montgomery C. A., Jr, Butel J. S., Bradley A., Donehower L. A. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet. 1993 Nov;5(3):225–229. doi: 10.1038/ng1193-225. [DOI] [PubMed] [Google Scholar]
- Harvey M., Vogel H., Lee E. Y., Bradley A., Donehower L. A. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res. 1995 Mar 1;55(5):1146–1151. [PubMed] [Google Scholar]
- Hu N., Gutsmann A., Herbert D. C., Bradley A., Lee W. H., Lee E. Y. Heterozygous Rb-1 delta 20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene. 1994 Apr;9(4):1021–1027. [PubMed] [Google Scholar]
- Huczkowski J., Trott K. R. Dose fractionation effects in low dose rate irradiation of jejunal crypt stem cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Sep;46(3):293–298. doi: 10.1080/09553008414551421. [DOI] [PubMed] [Google Scholar]
- Ito N., Hasegawa R., Sano M., Tamano S., Esumi H., Takayama S., Sugimura T. A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis. 1991 Aug;12(8):1503–1506. doi: 10.1093/carcin/12.8.1503. [DOI] [PubMed] [Google Scholar]
- Jacks T., Remington L., Williams B. O., Schmitt E. M., Halachmi S., Bronson R. T., Weinberg R. A. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994 Jan 1;4(1):1–7. doi: 10.1016/s0960-9822(00)00002-6. [DOI] [PubMed] [Google Scholar]
- Merritt A. J., Potten C. S., Kemp C. J., Hickman J. A., Balmain A., Lane D. P., Hall P. A. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 1994 Feb 1;54(3):614–617. [PubMed] [Google Scholar]
- Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. [DOI] [PubMed] [Google Scholar]
- Olive P. L., Banáth J. P., Durand R. E. Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J Natl Cancer Inst. 1990 May 2;82(9):779–783. doi: 10.1093/jnci/82.9.779. [DOI] [PubMed] [Google Scholar]
- Olive P. L., Banáth J. P., Durand R. E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res. 1990 Apr;122(1):86–94. [PubMed] [Google Scholar]
- Potten C. S., Schofield R., Lajtha L. G. A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochim Biophys Acta. 1979 Aug 10;560(2):281–299. doi: 10.1016/0304-419x(79)90022-2. [DOI] [PubMed] [Google Scholar]
- Purdie C. A., Harrison D. J., Peter A., Dobbie L., White S., Howie S. E., Salter D. M., Bird C. C., Wyllie A. H., Hooper M. L. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene. 1994 Feb;9(2):603–609. [PubMed] [Google Scholar]
- Singhal R. K., Prasad R., Wilson S. H. DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J Biol Chem. 1995 Jan 13;270(2):949–957. doi: 10.1074/jbc.270.2.949. [DOI] [PubMed] [Google Scholar]
- Winton D. J., Peacock J. H., Ponder B. A. Effect of gamma radiation at high- and low-dose rate on a novel in vivo mutation assay in mouse intestine. Mutagenesis. 1989 Sep;4(5):404–406. doi: 10.1093/mutage/4.5.404. [DOI] [PubMed] [Google Scholar]
- Wright G. E., Hübscher U., Khan N. N., Focher F., Verri A. Inhibitor analysis of calf thymus DNA polymerases alpha, delta and epsilon. FEBS Lett. 1994 Mar 14;341(1):128–130. doi: 10.1016/0014-5793(94)80254-8. [DOI] [PubMed] [Google Scholar]
