Abstract
The cells populating the intestinal crypts are part of a dynamic tissue system which involves the self-renewal of stem cells, a commitment to proliferation, lineage-specific differentiation, movement and cell death. Our knowledge of these processes is limited, but even now there are important clues to the nature of the regulatory systems, and these clues are leading to a better understanding of intestinal cancers. Few intestinal-specific markers have been described; however, homeobox genes such as cdx-2 appear to be important for morphogenic events in the intestine. There are several intestinal cell surface proteins such as the A33 antigen which have been used as targets for immunotherapy. Many regulatory cytokines (lymphokines or growth factors) influence intestinal development: enteroglucagon, IL-2, FGF, EGF family members. In conjunction with cell-cell contact and/or ECM, these cytokines lead to specific differentiation signals. Although the tissue distribution of mitogens such as EGF, TGF alpha, amphiregulin, betacellulin, HB-EGF and cripto have been studied in detail, the physiological roles of these proteins have been difficult to determine. Clearly, these mitogens and the corresponding receptors are involved in the maintenance and progression of the tumorigenic state. The interactions between mitogenic, tumour suppressor and oncogenic systems are complex, but the tumorigenic effects of multiple lesions in intestinal carcinomas involve synergistic actions from lesions in these different systems. Together, the truncation of apc and activation of the ras oncogene are sufficient to induce colon tumorigenesis. If we are to improve cancer therapy, it is imperative that we discover the biological significance of these interactions, in particular the effects on cell division, movement and survival.
Full Text
The Full Text of this article is available as a PDF (166.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altmann G. G., Enesco M. Cell number as a measure of distribution and renewal of epithelial cells in the small intestine of growing and adult rats. Am J Anat. 1967 Sep;121(2):319–336. doi: 10.1002/aja.1001210210. [DOI] [PubMed] [Google Scholar]
- Barth A. I., Pollack A. L., Altschuler Y., Mostov K. E., Nelson W. J. NH2-terminal deletion of beta-catenin results in stable colocalization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J Cell Biol. 1997 Feb 10;136(3):693–706. doi: 10.1083/jcb.136.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Ze'ev A. Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol. 1997 Feb;9(1):99–108. doi: 10.1016/s0955-0674(97)80158-5. [DOI] [PubMed] [Google Scholar]
- Bos J. L., Fearon E. R., Hamilton S. R., Verlaan-de Vries M., van Boom J. H., van der Eb A. J., Vogelstein B. Prevalence of ras gene mutations in human colorectal cancers. 1987 May 28-Jun 3Nature. 327(6120):293–297. doi: 10.1038/327293a0. [DOI] [PubMed] [Google Scholar]
- Cartlidge S. A., Elder J. B. Transforming growth factor alpha and epidermal growth factor levels in normal human gastrointestinal mucosa. Br J Cancer. 1989 Nov;60(5):657–660. doi: 10.1038/bjc.1989.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chawengsaksophak K., James R., Hammond V. E., Köntgen F., Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997 Mar 6;386(6620):84–87. doi: 10.1038/386084a0. [DOI] [PubMed] [Google Scholar]
- Cheng H. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am J Anat. 1974 Dec;141(4):521–535. doi: 10.1002/aja.1001410406. [DOI] [PubMed] [Google Scholar]
- Cohn S. M., Roth K. A., Birkenmeier E. H., Gordon J. I. Temporal and spatial patterns of transgene expression in aging adult mice provide insights about the origins, organization, and differentiation of the intestinal epithelium. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1034–1038. doi: 10.1073/pnas.88.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn S. M., Simon T. C., Roth K. A., Birkenmeier E. H., Gordon J. I. Use of transgenic mice to map cis-acting elements in the intestinal fatty acid binding protein gene (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal-colonic and crypt-villus axes of the gut epithelium. J Cell Biol. 1992 Oct;119(1):27–44. doi: 10.1083/jcb.119.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Abaco G. M., Whitehead R. H., Burgess A. W. Synergy between Apc min and an activated ras mutation is sufficient to induce colon carcinomas. Mol Cell Biol. 1996 Mar;16(3):884–891. doi: 10.1128/mcb.16.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dignass A. U., Stow J. L., Babyatsky M. W. Acute epithelial injury in the rat small intestine in vivo is associated with expanded expression of transforming growth factor alpha and beta. Gut. 1996 May;38(5):687–693. doi: 10.1136/gut.38.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duprey P., Chowdhury K., Dressler G. R., Balling R., Simon D., Guenet J. L., Gruss P. A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes Dev. 1988 Dec;2(12A):1647–1654. doi: 10.1101/gad.2.12a.1647. [DOI] [PubMed] [Google Scholar]
- Edwards W. H., Whitehead R. H. Effects of vesicocolic anastomosis on the proliferation of colonic mucosa in a rat model. Aust N Z J Surg. 1995 Sep;65(9):667–671. doi: 10.1111/j.1445-2197.1995.tb00678.x. [DOI] [PubMed] [Google Scholar]
- Foster H. M., Whitehead R. H. Intravenous but not intracolonic epidermal growth factor maintains colonocyte proliferation in defunctioned rat colorectum. Gastroenterology. 1990 Dec;99(6):1710–1714. doi: 10.1016/0016-5085(90)90477-i. [DOI] [PubMed] [Google Scholar]
- Friedman E., Gillin S., Lipkin M. 12-O-Tetradecanoylphorbol-13-acetate stimulation of DNA synthesis in cultured preneoplastic familial polyposis colonic epithelial cells but not in normal colonic epithelial cells. Cancer Res. 1984 Sep;44(9):4078–4086. [PubMed] [Google Scholar]
- Fritsch C., Simon-Assmann P., Kedinger M., Evans G. S. Cytokines modulate fibroblast phenotype and epithelial-stroma interactions in rat intestine. Gastroenterology. 1997 Mar;112(3):826–838. doi: 10.1053/gast.1997.v112.pm9041244. [DOI] [PubMed] [Google Scholar]
- Gleeson M. H., Bloom S. R., Polak J. M., Henry K., Dowling R. H. Endocrine tumour in kidney affecting small bowel structure, motility, and absorptive function. Gut. 1971 Oct;12(10):773–782. doi: 10.1136/gut.12.10.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J. I., Schmidt G. H., Roth K. A. Studies of intestinal stem cells using normal, chimeric, and transgenic mice. FASEB J. 1992 Sep;6(12):3039–3050. doi: 10.1096/fasebj.6.12.1521737. [DOI] [PubMed] [Google Scholar]
- Hague A., Hicks D. J., Bracey T. S., Paraskeva C. Cell-cell contact and specific cytokines inhibit apoptosis of colonic epithelial cells: growth factors protect against c-myc-independent apoptosis. Br J Cancer. 1997;75(7):960–968. doi: 10.1038/bjc.1997.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauft S. M., Kim S. H., Schmidt G. H., Pease S., Rees S., Harris S., Roth K. A., Hansbrough J. R., Cohn S. M., Ahnen D. J. Expression of SV-40 T antigen in the small intestinal epithelium of transgenic mice results in proliferative changes in the crypt and reentry of villus-associated enterocytes into the cell cycle but has no apparent effect on cellular differentiation programs and does not cause neoplastic transformation. J Cell Biol. 1992 May;117(4):825–839. doi: 10.1083/jcb.117.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James R., Erler T., Kazenwadel J. Structure of the murine homeobox gene cdx-2. Expression in embryonic and adult intestinal epithelium. J Biol Chem. 1994 May 27;269(21):15229–15237. [PubMed] [Google Scholar]
- Jat P. S., Noble M. D., Ataliotis P., Tanaka Y., Yannoutsos N., Larsen L., Kioussis D. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5096–5100. doi: 10.1073/pnas.88.12.5096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kernéis S., Bogdanova A., Kraehenbuhl J. P., Pringault E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science. 1997 Aug 15;277(5328):949–952. doi: 10.1126/science.277.5328.949. [DOI] [PubMed] [Google Scholar]
- Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996 Jun 15;10(12):1433–1442. doi: 10.1101/gad.10.12.1433. [DOI] [PubMed] [Google Scholar]
- Konishi F., Oku T., Hosoya N. Hypertrophic effect of unavailable carbohydrate on cecum and colon in rats. J Nutr Sci Vitaminol (Tokyo) 1984 Aug;30(4):373–379. doi: 10.3177/jnsv.30.373. [DOI] [PubMed] [Google Scholar]
- Laken S. J., Petersen G. M., Gruber S. B., Oddoux C., Ostrer H., Giardiello F. M., Hamilton S. R., Hampel H., Markowitz A., Klimstra D. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet. 1997 Sep;17(1):79–83. doi: 10.1038/ng0997-79. [DOI] [PubMed] [Google Scholar]
- Liu B., Parsons R., Papadopoulos N., Nicolaides N. C., Lynch H. T., Watson P., Jass J. R., Dunlop M., Wyllie A., Peltomäki P. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med. 1996 Feb;2(2):169–174. doi: 10.1038/nm0296-169. [DOI] [PubMed] [Google Scholar]
- Luongo C., Moser A. R., Gledhill S., Dove W. F. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 1994 Nov 15;54(22):5947–5952. [PubMed] [Google Scholar]
- Lúdvíksson B. R., Ehrhardt R. O., Strober W. TGF-beta production regulates the development of the 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin-induced colonic inflammation in IL-2-deficient mice. J Immunol. 1997 Oct 1;159(7):3622–3628. [PubMed] [Google Scholar]
- Mallo G. V., Rechreche H., Frigerio J. M., Rocha D., Zweibaum A., Lacasa M., Jordan B. R., Dusetti N. J., Dagorn J. C., Iovanna J. L. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int J Cancer. 1997 Feb 20;74(1):35–44. doi: 10.1002/(sici)1097-0215(19970220)74:1<35::aid-ijc7>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Mann G. B., Fowler K. J., Gabriel A., Nice E. C., Williams R. L., Dunn A. R. Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell. 1993 Apr 23;73(2):249–261. doi: 10.1016/0092-8674(93)90227-h. [DOI] [PubMed] [Google Scholar]
- Marra G., Boland C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst. 1995 Aug 2;87(15):1114–1125. doi: 10.1093/jnci/87.15.1114. [DOI] [PubMed] [Google Scholar]
- Mlodzik M., Fjose A., Gehring W. J. Isolation of caudal, a Drosophila homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the pre-blastoderm stage. EMBO J. 1985 Nov;4(11):2961–2969. doi: 10.1002/j.1460-2075.1985.tb04030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morin P. J., Sparks A. B., Korinek V., Barker N., Clevers H., Vogelstein B., Kinzler K. W. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997 Mar 21;275(5307):1787–1790. doi: 10.1126/science.275.5307.1787. [DOI] [PubMed] [Google Scholar]
- Moser A. R., Dove W. F., Roth K. A., Gordon J. I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol. 1992 Mar;116(6):1517–1526. doi: 10.1083/jcb.116.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moyer M. P., Aust J. B. Human colon cells: culture and in vitro transformation. Science. 1984 Jun 29;224(4656):1445–1447. doi: 10.1126/science.6328655. [DOI] [PubMed] [Google Scholar]
- Munemitsu S., Albert I., Souza B., Rubinfeld B., Polakis P. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3046–3050. doi: 10.1073/pnas.92.7.3046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen O. H., Køppen T., Rüdiger N., Horn T., Eriksen J., Kirman I. Involvement of interleukin-4 and -10 in inflammatory bowel disease. Dig Dis Sci. 1996 Sep;41(9):1786–1793. doi: 10.1007/BF02088746. [DOI] [PubMed] [Google Scholar]
- Näthke I. S., Adams C. L., Polakis P., Sellin J. H., Nelson W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol. 1996 Jul;134(1):165–179. doi: 10.1083/jcb.134.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto W. R., Rao J., Cox H. M., Kotzian E., Lee C. Y., Goodlad R. A., Lane A., Gorman M., Freemont P. A., Hansen H. F. Effects of pancreatic spasmolytic Polypeptide (PSP) on epithelial cell function. Eur J Biochem. 1996 Jan 15;235(1-2):64–72. doi: 10.1111/j.1432-1033.1996.00064.x. [DOI] [PubMed] [Google Scholar]
- Park H. S., Goodlad R. A., Ahnen D. J., Winnett A., Sasieni P., Lee C. Y., Wright N. A. Effects of epidermal growth factor and dimethylhydrazine on crypt size, cell proliferation, and crypt fission in the rat colon. Cell proliferation and crypt fission are controlled independently. Am J Pathol. 1997 Sep;151(3):843–852. [PMC free article] [PubMed] [Google Scholar]
- Polakis P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta. 1997 Jun 7;1332(3):F127–F147. doi: 10.1016/s0304-419x(97)00008-5. [DOI] [PubMed] [Google Scholar]
- Potten C. S. Epithelial cell growth and differentiation. II. Intestinal apoptosis. Am J Physiol. 1997 Aug;273(2 Pt 1):G253–G257. doi: 10.1152/ajpgi.1997.273.2.G253. [DOI] [PubMed] [Google Scholar]
- Potten C. S. Protection of the small intestinal clonogenic stem cells from radiation-induced damage by pretreatment with interleukin 11 also increases murine survival time. Stem Cells. 1996 Jul;14(4):452–459. doi: 10.1002/stem.140452. [DOI] [PubMed] [Google Scholar]
- Prieto R. M., Ferrer M., Fe J. M., Rayó J. M., Tur J. A. Morphological adaptive changes of small intestinal tract regions due to pregnancy and lactation in rats. Ann Nutr Metab. 1994;38(5):295–300. doi: 10.1159/000177824. [DOI] [PubMed] [Google Scholar]
- Riese D. J., 2nd, Bermingham Y., van Raaij T. M., Buckley S., Plowman G. D., Stern D. F. Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene. 1996 Jan 18;12(2):345–353. [PubMed] [Google Scholar]
- Rubinfeld B., Robbins P., El-Gamil M., Albert I., Porfiri E., Polakis P. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997 Mar 21;275(5307):1790–1792. doi: 10.1126/science.275.5307.1790. [DOI] [PubMed] [Google Scholar]
- Saeki T., Stromberg K., Qi C. F., Gullick W. J., Tahara E., Normanno N., Ciardiello F., Kenney N., Johnson G. R., Salomon D. S. Differential immunohistochemical detection of amphiregulin and cripto in human normal colon and colorectal tumors. Cancer Res. 1992 Jun 15;52(12):3467–3473. [PubMed] [Google Scholar]
- Schmidt G. H., Wilkinson M. M., Ponder B. A. Cell migration pathway in the intestinal epithelium: an in situ marker system using mouse aggregation chimeras. Cell. 1985 Feb;40(2):425–429. doi: 10.1016/0092-8674(85)90156-4. [DOI] [PubMed] [Google Scholar]
- Seno M., Tada H., Kosaka M., Sasada R., Igarashi K., Shing Y., Folkman J., Ueda M., Yamada H. Human betacellulin, a member of the EGF family dominantly expressed in pancreas and small intestine, is fully active in a monomeric form. Growth Factors. 1996;13(3-4):181–191. doi: 10.3109/08977199609003220. [DOI] [PubMed] [Google Scholar]
- Shibata H., Toyama K., Shioya H., Ito M., Hirota M., Hasegawa S., Matsumoto H., Takano H., Akiyama T., Toyoshima K. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science. 1997 Oct 3;278(5335):120–123. doi: 10.1126/science.278.5335.120. [DOI] [PubMed] [Google Scholar]
- Sizeland A. M., Burgess A. W. Anti-sense transforming growth factor alpha oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol Biol Cell. 1992 Nov;3(11):1235–1243. doi: 10.1091/mbc.3.11.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subramanian V., Meyer B. I., Gruss P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell. 1995 Nov 17;83(4):641–653. doi: 10.1016/0092-8674(95)90104-3. [DOI] [PubMed] [Google Scholar]
- Suh E., Traber P. G. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol. 1996 Feb;16(2):619–625. doi: 10.1128/mcb.16.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi K., Suzuki K., Tsukatani Y. Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence. Oncogene. 1997 Jul 3;15(1):71–78. doi: 10.1038/sj.onc.1201160. [DOI] [PubMed] [Google Scholar]
- Van de Water N. S., Jeevaratnam P., Browett P. J., Stewart S. M., Lane M. R., Jass J. R. Direct mutational analysis in a family with hereditary non-polyposis colorectal cancer. Aust N Z J Med. 1994 Dec;24(6):682–686. doi: 10.1111/j.1445-5994.1994.tb01783.x. [DOI] [PubMed] [Google Scholar]
- Whitehead R. H., Joseph J. L. Derivation of conditionally immortalized cell lines containing the Min mutation from the normal colonic mucosa and other tissues of an "Immortomouse"/Min hybrid. Epithelial Cell Biol. 1994 Jul;3(3):119–125. [PubMed] [Google Scholar]
- Whitehead R. H., VanEeden P. E., Noble M. D., Ataliotis P., Jat P. S. Establishment of conditionally immortalized epithelial cell lines from both colon and small intestine of adult H-2Kb-tsA58 transgenic mice. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):587–591. doi: 10.1073/pnas.90.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whithead R. H., Nice E. C., Lloyd C. J., James R., Burgess A. W. Detection of colonic growth factors using a human colonic carcinoma cell line (LIM1215). Int J Cancer. 1990 Nov 15;46(5):858–863. doi: 10.1002/ijc.2910460518. [DOI] [PubMed] [Google Scholar]
- Wright N. A., Irwin M. The kinetics of villus cell populations in the mouse small intestine. I. Normal villi: the steady state requirement. Cell Tissue Kinet. 1982 Nov;15(6):595–609. doi: 10.1111/j.1365-2184.1982.tb01066.x. [DOI] [PubMed] [Google Scholar]