Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Jun 29;353(1370):925–933. doi: 10.1098/rstb.1998.0257

Aspects of the biology of regeneration and repair in the human gastrointestinal tract.

N A Wright 1
PMCID: PMC1692279  PMID: 9684290

Abstract

The main pathways of epithelial differentiation in the intestine, Paneth, mucous, endocrine and columnar cell lineages are well recognized. However, in abnormal circumstances, for example in mucosal ulceration, a cell lineage with features distinct from these emerges, which has often been dismissed in the past as 'pyloric' metaplasia, because of its morphological resemblance to the pyloric mucosa in the stomach. However, we can conclude that this cell lineage has a defined phenotype unique in gastrointestinal epithelia, has a histogenesis that resembles that of Brunner's glands, but acquires a proliferative organization similar to that of the gastric gland. It expresses several peptides of particular interest, including epidermal growth factor, the trefoil peptides TFF1, TFF2, TFF3, lysozyme and PSTI. The presence of this lineage also appears to cause altered gene expression in adjacent indigenous cell lineages. We propose that this cell lineage is induced in gastrointestinal stem cells as a result of chronic mucosal ulceration, and plays an important part in ulcer healing; it should therefore be added to the repertoire of gastrointestinal stem cells.

Full Text

The Full Text of this article is available as a PDF (287.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahnen D. J., Poulsom R., Stamp G. W., Elia G., Pike C., Jeffery R., Longcroft J., Rio M. C., Chambon P., Wright N. A. The ulceration-associated cell lineage (UACL) reiterates the Brunner's gland differentiation programme but acquires the proliferative organization of the gastric gland. J Pathol. 1994 Aug;173(4):317–326. doi: 10.1002/path.1711730406. [DOI] [PubMed] [Google Scholar]
  2. Alison M. R., Chinery R., Poulsom R., Ashwood P., Longcroft J. M., Wright N. A. Experimental ulceration leads to sequential expression of spasmolytic polypeptide, intestinal trefoil factor, epidermal growth factor and transforming growth factor alpha mRNAs in rat stomach. J Pathol. 1995 Apr;175(4):405–414. doi: 10.1002/path.1711750408. [DOI] [PubMed] [Google Scholar]
  3. Baker P. R., Wilton J. C., Jones C. E., Stenzel D. J., Watson N., Smith G. J. Bile acids influence the growth, oestrogen receptor and oestrogen-regulated proteins of MCF-7 human breast cancer cells. Br J Cancer. 1992 Apr;65(4):566–572. doi: 10.1038/bjc.1992.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carr M. D., Bauer C. J., Gradwell M. J., Feeney J. Solution structure of a trefoil-motif-containing cell growth factor, porcine spasmolytic protein. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2206–2210. doi: 10.1073/pnas.91.6.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavailles V., Garcia M., Rochefort H. Regulation of cathepsin-D and pS2 gene expression by growth factors in MCF7 human breast cancer cells. Mol Endocrinol. 1989 Mar;3(3):552–558. doi: 10.1210/mend-3-3-552. [DOI] [PubMed] [Google Scholar]
  6. Chadwick M. P., May F. E., Westley B. R. Production and comparison of mature single-domain 'trefoil' peptides pNR-2/pS2 Cys58 and pNR-2/pS2 Ser58. Biochem J. 1995 Jun 15;308(Pt 3):1001–1007. doi: 10.1042/bj3081001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chinery R., Bates P. A., De A., Freemont P. S. Characterisation of the single copy trefoil peptides intestinal trefoil factor and pS2 and their ability to form covalent dimers. FEBS Lett. 1995 Jan 2;357(1):50–54. doi: 10.1016/0014-5793(94)01297-e. [DOI] [PubMed] [Google Scholar]
  8. Chinery R., Cox H. M. Immunoprecipitation and characterization of a binding protein specific for the peptide, intestinal trefoil factor. Peptides. 1995;16(4):749–755. doi: 10.1016/0196-9781(95)00045-l. [DOI] [PubMed] [Google Scholar]
  9. Chinery R., Cox H. M. Modulation of epidermal growth factor effects on epithelial ion transport by intestinal trefoil factor. Br J Pharmacol. 1995 May;115(1):77–80. doi: 10.1111/j.1476-5381.1995.tb16322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chinery R., Playford R. J. Combined intestinal trefoil factor and epidermal growth factor is prophylactic against indomethacin-induced gastric damage in the rat. Clin Sci (Lond) 1995 Apr;88(4):401–403. doi: 10.1042/cs0880401. [DOI] [PubMed] [Google Scholar]
  11. Chinery R., Poulsom R., Elia G., Hanby A. M., Wright N. A. Expression and purification of a trefoil peptide motif in a beta-galactosidase fusion protein and its use to search for trefoil-binding sites. Eur J Biochem. 1993 Mar 1;212(2):557–563. doi: 10.1111/j.1432-1033.1993.tb17693.x. [DOI] [PubMed] [Google Scholar]
  12. Chinery R., Poulsom R., Rogers L. A., Jeffery R. E., Longcroft J. M., Hanby A. M., Wright N. A. Localization of intestinal trefoil-factor mRNA in rat stomach and intestine by hybridization in situ. Biochem J. 1992 Jul 1;285(Pt 1):5–8. doi: 10.1042/bj2850005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chinery R., Williamson J., Poulsom R. The gene encoding human intestinal trefoil factor (TFF3) is located on chromosome 21q22.3 clustered with other members of the trefoil peptide family. Genomics. 1996 Mar 1;32(2):281–284. doi: 10.1006/geno.1996.0117. [DOI] [PubMed] [Google Scholar]
  14. De A., Brown D. G., Gorman M. A., Carr M., Sanderson M. R., Freemont P. S. Crystal structure of a disulfide-linked "trefoil" motif found in a large family of putative growth factors. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1084–1088. doi: 10.1073/pnas.91.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dignass A., Lynch-Devaney K., Kindon H., Thim L., Podolsky D. K. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J Clin Invest. 1994 Jul;94(1):376–383. doi: 10.1172/JCI117332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frandsen E. K., Jørgensen K. H., Thim L. Receptor binding of pancreatic spasmolytic polypeptide (PSP) in rat intestinal mucosal cell membranes inhibits the adenylate cyclase activity. Regul Pept. 1986 Dec 30;16(3-4):291–297. doi: 10.1016/0167-0115(86)90028-5. [DOI] [PubMed] [Google Scholar]
  17. Goodlad R. A., Raja K. B., Peters T. J., Wright N. A. Effects of urogastrone-epidermal growth factor on intestinal brush border enzymes and mitotic activity. Gut. 1991 Sep;32(9):994–998. doi: 10.1136/gut.32.9.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goodlad R. A., Wilson T. J., Lenton W., Gregory H., McCullagh K. G., Wright N. A. Intravenous but not intragastric urogastrone-EGF is trophic to the intestine of parenterally fed rats. Gut. 1987 May;28(5):573–582. doi: 10.1136/gut.28.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Griffiths D. F., Davies S. J., Williams D., Williams G. T., Williams E. D. Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature. 1988 Jun 2;333(6172):461–463. doi: 10.1038/333461a0. [DOI] [PubMed] [Google Scholar]
  20. Hanby A. M., Jankowski J. A., Elia G., Poulsom R., Wright N. A. Expression of the trefoil peptides pS2 and human spasmolytic polypeptide (hSP) in Barrett's metaplasia and the native oesophageal epithelium: delineation of epithelial phenotype. J Pathol. 1994 Jul;173(3):213–219. doi: 10.1002/path.1711730303. [DOI] [PubMed] [Google Scholar]
  21. Hanby A. M., Poulsom R., Singh S., Elia G., Jeffery R. E., Wright N. A. Spasmolytic polypeptide is a major antral peptide: distribution of the trefoil peptides human spasmolytic polypeptide and pS2 in the stomach. Gastroenterology. 1993 Oct;105(4):1110–1116. doi: 10.1016/0016-5085(93)90956-d. [DOI] [PubMed] [Google Scholar]
  22. Hauser F., Poulsom R., Chinery R., Rogers L. A., Hanby A. M., Wright N. A., Hoffmann W. hP1.B, a human P-domain peptide homologous with rat intestinal trefoil factor, is expressed also in the ulcer-associated cell lineage and the uterus. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6961–6965. doi: 10.1073/pnas.90.15.6961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Heitz P. U., Kasper M., van Noorden S., Polak J. M., Gregory H., Pearse A. G. Immunohistochemical localisation of urogastrone to human duodenal and submandibular glands. Gut. 1978 May;19(5):408–413. doi: 10.1136/gut.19.5.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hirota M., Awatsuji H., Furukawa Y., Hayashi K. Cytokine regulation of PS2 gene expression in mouse astrocytes. Biochem Mol Biol Int. 1994 Jun;33(3):515–520. [PubMed] [Google Scholar]
  25. Hoffmann W., Hauser F. The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia? Trends Biochem Sci. 1993 Jul;18(7):239–243. doi: 10.1016/0968-0004(93)90170-r. [DOI] [PubMed] [Google Scholar]
  26. Jeffrey G. P., Oates P. S., Wang T. C., Babyatsky M. W., Brand S. J. Spasmolytic polypeptide: a trefoil peptide secreted by rat gastric mucous cells. Gastroenterology. 1994 Feb;106(2):336–345. doi: 10.1016/0016-5085(94)90590-8. [DOI] [PubMed] [Google Scholar]
  27. Jørgensen K. D., Diamant B., Jørgensen K. H., Thim L. Pancreatic spasmolytic polypeptide (PSP): III. Pharmacology of a new porcine pancreatic polypeptide with spasmolytic and gastric acid secretion inhibitory effects. Regul Pept. 1982 Mar;3(3-4):231–243. doi: 10.1016/0167-0115(82)90128-8. [DOI] [PubMed] [Google Scholar]
  28. Kida N., Yoshimura T., Mori K., Hayashi K. Hormonal regulation of synthesis and secretion of pS2 protein relevant to growth of human breast cancer cells (MCF-7). Cancer Res. 1989 Jul 1;49(13):3494–3498. [PubMed] [Google Scholar]
  29. LIBER A. F. Aberrant pyloric glands in regional ileitis. AMA Arch Pathol. 1951 Feb;51(2):205–212. [PubMed] [Google Scholar]
  30. Lacy E. R., Morris G. P., Cohen M. M. Rapid repair of the surface epithelium in human gastric mucosa after acute superficial injury. J Clin Gastroenterol. 1993;17 (Suppl 1):S125–S135. doi: 10.1097/00004836-199312001-00023. [DOI] [PubMed] [Google Scholar]
  31. Lefebvre O., Chenard M. P., Masson R., Linares J., Dierich A., LeMeur M., Wendling C., Tomasetto C., Chambon P., Rio M. C. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science. 1996 Oct 11;274(5285):259–262. doi: 10.1126/science.274.5285.259. [DOI] [PubMed] [Google Scholar]
  32. Lefebvre O., Chenard M. P., Masson R., Linares J., Dierich A., LeMeur M., Wendling C., Tomasetto C., Chambon P., Rio M. C. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science. 1996 Oct 11;274(5285):259–262. doi: 10.1126/science.274.5285.259. [DOI] [PubMed] [Google Scholar]
  33. Mashimo H., Podolsky D. K., Fishman M. C. Structure and expression of murine intestinal trefoil factor: high evolutionary conservation and postnatal expression. Biochem Biophys Res Commun. 1995 May 5;210(1):31–37. doi: 10.1006/bbrc.1995.1623. [DOI] [PubMed] [Google Scholar]
  34. May F. E., Westley B. R. Trefoil proteins: their role in normal and malignant cells. J Pathol. 1997 Sep;183(1):4–7. doi: 10.1002/(SICI)1096-9896(199709)183:1<4::AID-PATH1099>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  35. Miyashita S., Nomoto H., Konishi H., Hayashi K. Estimation of pS2 protein level in human body fluids by a sensitive two-site enzyme immunoassay. Clin Chim Acta. 1994 Aug;228(2):71–81. doi: 10.1016/0009-8981(94)90278-x. [DOI] [PubMed] [Google Scholar]
  36. Mori K., Fujii R., Kida N., Takahashi H., Ohkubo S., Fujino M., Ohta M., Hayashi K. Complete primary structure of the human estrogen-responsive gene (pS2) product. J Biochem. 1990 Jan;107(1):73–76. doi: 10.1093/oxfordjournals.jbchem.a123014. [DOI] [PubMed] [Google Scholar]
  37. Novelli M. R., Williamson J. A., Tomlinson I. P., Elia G., Hodgson S. V., Talbot I. C., Bodmer W. F., Wright N. A. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science. 1996 May 24;272(5265):1187–1190. doi: 10.1126/science.272.5265.1187. [DOI] [PubMed] [Google Scholar]
  38. Patel K., Hanby A. M., Ahnen D. J., Playford R. J., Wright N. A. The kinetic organization of the ulcer-associated cell lineage (UACL): delineation of a novel putative stem-cell region. Epithelial Cell Biol. 1994;3(4):156–160. [PubMed] [Google Scholar]
  39. Playford R. J., Marchbank T., Chinery R., Evison R., Pignatelli M., Boulton R. A., Thim L., Hanby A. M. Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration. Gastroenterology. 1995 Jan;108(1):108–116. doi: 10.1016/0016-5085(95)90014-4. [DOI] [PubMed] [Google Scholar]
  40. Podolsky D. K., Lynch-Devaney K., Stow J. L., Oates P., Murgue B., DeBeaumont M., Sands B. E., Mahida Y. R. Identification of human intestinal trefoil factor. Goblet cell-specific expression of a peptide targeted for apical secretion. J Biol Chem. 1993 Mar 25;268(9):6694–6702. [PubMed] [Google Scholar]
  41. Podolsky D. K., Pleskow D. K., Jafari H. Latent transformed growth-inhibiting factor in human malignant effusions. Cancer Res. 1988 Jan 15;48(2):418–424. [PubMed] [Google Scholar]
  42. Poulsom R., Hanby A. M., Lalani E. N., Hauser F., Hoffmann W., Stamp G. W. Intestinal trefoil factor (TFF 3) and pS2 (TFF 1), but not spasmolytic polypeptide (TFF 2) mRNAs are co-expressed in normal, hyperplastic, and neoplastic human breast epithelium. J Pathol. 1997 Sep;183(1):30–38. doi: 10.1002/(SICI)1096-9896(199709)183:1<30::AID-PATH1085>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  43. Poulsom R., Wright N. A. Trefoil peptides: a newly recognized family of epithelial mucin-associated molecules. Am J Physiol. 1993 Aug;265(2 Pt 1):G205–G213. doi: 10.1152/ajpgi.1993.265.2.G205. [DOI] [PubMed] [Google Scholar]
  44. Rasmussen T. N., Harling H., Thim L., Pierzynowski S., Weström B. R., Holst J. J. Regulation of secretion of pancreatic spasmolytic polypeptide from porcine pancreas. Am J Physiol. 1993 Jan;264(1 Pt 1):G22–G29. doi: 10.1152/ajpgi.1993.264.1.G22. [DOI] [PubMed] [Google Scholar]
  45. Rasmussen T. N., Thim L., Raaberg L., Harling H., Holst J. J. Pancreatic spasmolytic polypeptide, a potential growth factor for the intestine: neural control of secretion. Digestion. 1990;46 (Suppl 2):226–231. doi: 10.1159/000200390. [DOI] [PubMed] [Google Scholar]
  46. Rio M. C., Bellocq J. P., Daniel J. Y., Tomasetto C., Lathe R., Chenard M. P., Batzenschlager A., Chambon P. Breast cancer-associated pS2 protein: synthesis and secretion by normal stomach mucosa. Science. 1988 Aug 5;241(4866):705–708. doi: 10.1126/science.3041593. [DOI] [PubMed] [Google Scholar]
  47. Rio M. C., Chambon P. The pS2 gene, mRNA, and protein: a potential marker for human breast cancer. Cancer Cells. 1990 Aug-Sep;2(8-9):269–274. [PubMed] [Google Scholar]
  48. Rio M. C., Lepage P., Diemunsch P., Roitsch C., Chambon P. Structure primaire de la protéine humaine pS2. C R Acad Sci III. 1988;307(19):825–831. [PubMed] [Google Scholar]
  49. Sands B. E., Ogata H., Lynch-Devaney K., deBeaumont M., Ezzell R. M., Podolsky D. K. Molecular cloning of the rat intestinal trefoil factor gene. Characterization of an intestinal goblet cell-associated promoter. J Biol Chem. 1995 Apr 21;270(16):9353–9361. doi: 10.1074/jbc.270.16.9353. [DOI] [PubMed] [Google Scholar]
  50. Scheving L. A., Shiurba R. A., Nguyen T. D., Gray G. M. Epidermal growth factor receptor of the intestinal enterocyte. Localization to laterobasal but not brush border membrane. J Biol Chem. 1989 Jan 25;264(3):1735–1741. [PubMed] [Google Scholar]
  51. Schmidt G. H., Winton D. J., Ponder B. A. Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development. 1988 Aug;103(4):785–790. doi: 10.1242/dev.103.4.785. [DOI] [PubMed] [Google Scholar]
  52. Stamp G. W., Poulsom R., Chung L. P., Keshav S., Jeffery R. E., Longcroft J. A., Pignatelli M., Wright N. A. Lysozyme gene expression in inflammatory bowel disease. Gastroenterology. 1992 Aug;103(2):532–538. doi: 10.1016/0016-5085(92)90843-n. [DOI] [PubMed] [Google Scholar]
  53. Suemori S., Lynch-Devaney K., Podolsky D. K. Identification and characterization of rat intestinal trefoil factor: tissue- and cell-specific member of the trefoil protein family. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11017–11021. doi: 10.1073/pnas.88.24.11017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Takahashi H., Kida N., Fujii R., Tanaka K., Ohta M., Mori K., Hayashi K. Expression of the pS2 gene in human gastric cancer cells derived from poorly differentiated adenocarcinoma. FEBS Lett. 1990 Feb 26;261(2):283–286. doi: 10.1016/0014-5793(90)80572-z. [DOI] [PubMed] [Google Scholar]
  55. Thim L., Jørgensen K. H., Jørgensen K. D. Pancreatic spasmolytic polypeptide (PSP): II. Radioimmunological determination of PSP in porcine tissues, plasma and pancreatic juice. Regul Pept. 1982 Mar;3(3-4):221–230. doi: 10.1016/0167-0115(82)90127-6. [DOI] [PubMed] [Google Scholar]
  56. Thim L., Wöldike H. F., Nielsen P. F., Christensen M., Lynch-Devaney K., Podolsky D. K. Characterization of human and rat intestinal trefoil factor produced in yeast. Biochemistry. 1995 Apr 11;34(14):4757–4764. doi: 10.1021/bi00014a033. [DOI] [PubMed] [Google Scholar]
  57. Thompson M., Fleming K. A., Evans D. J., Fundele R., Surani M. A., Wright N. A. Gastric endocrine cells share a clonal origin with other gut cell lineages. Development. 1990 Oct;110(2):477–481. doi: 10.1242/dev.110.2.477. [DOI] [PubMed] [Google Scholar]
  58. Threadgill D. S., Womack J. E. The bovine pancreatic spasmolytic polypeptide gene maps to syntenic group U10: implications for the evolution of the human breast cancer estrogen inducible locus. J Hered. 1991 Nov-Dec;82(6):496–498. doi: 10.1093/oxfordjournals.jhered.a111135. [DOI] [PubMed] [Google Scholar]
  59. Tomasetto C., Rockel N., Mattei M. G., Fujita R., Rio M. C. The gene encoding the human spasmolytic protein (SML1/hSP) is in 21q 22.3, physically linked to the homologous breast cancer marker gene BCEI/pS2. Genomics. 1992 Aug;13(4):1328–1330. doi: 10.1016/0888-7543(92)90059-2. [DOI] [PubMed] [Google Scholar]
  60. Walker-Smith J. A., Phillips A. D., Walford N., Gregory H., Fitzgerald J. D., MacCullagh K., Wright N. A. Intravenous epidermal growth factor/urogastrone increases small-intestinal cell proliferation in congenital microvillous atrophy. Lancet. 1985 Nov 30;2(8466):1239–1240. doi: 10.1016/s0140-6736(85)90762-7. [DOI] [PubMed] [Google Scholar]
  61. Williams R., Stamp G. W., Gilbert C., Pignatelli M., Lalani E. N. pS2 transfection of murine adenocarcinoma cell line 410.4 enhances dispersed growth pattern in a 3-D collagen gel. J Cell Sci. 1996 Jan;109(Pt 1):63–71. doi: 10.1242/jcs.109.1.63. [DOI] [PubMed] [Google Scholar]
  62. Wright N. A., Pike C. M., Elia G. Ulceration induces a novel epidermal growth factor-secreting cell lineage in human gastrointestinal mucosa. Digestion. 1990;46 (Suppl 2):125–133. doi: 10.1159/000200375. [DOI] [PubMed] [Google Scholar]
  63. Wright N. A., Pike C., Elia G. Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells. Nature. 1990 Jan 4;343(6253):82–85. doi: 10.1038/343082a0. [DOI] [PubMed] [Google Scholar]
  64. Wright N. A., Poulsom R., Stamp G. W., Hall P. A., Jeffery R. E., Longcroft J. M., Rio M. C., Tomasetto C., Chambon P. Epidermal growth factor (EGF/URO) induces expression of regulatory peptides in damaged human gastrointestinal tissues. J Pathol. 1990 Dec;162(4):279–284. doi: 10.1002/path.1711620402. [DOI] [PubMed] [Google Scholar]
  65. Wright N. A., Poulsom R., Stamp G., Van Noorden S., Sarraf C., Elia G., Ahnen D., Jeffery R., Longcroft J., Pike C. Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease. Gastroenterology. 1993 Jan;104(1):12–20. doi: 10.1016/0016-5085(93)90830-6. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES