Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Jun 29;353(1370):821–830. doi: 10.1098/rstb.1998.0246

Stem cells in gastrointestinal epithelium: numbers, characteristics and death.

C S Potten 1
PMCID: PMC1692280  PMID: 9684279

Abstract

The mammalian intestinal mucosa, with its distinctive polarity, high rate of proliferation and rapid cell migration, is an excellent model system to study proliferative hierarchies and the regulation of cell division, differentiation and cell death. Each crypt contains a few lineage ancestral stem cells (the 'ultimate stem cells'). However, there are other potential stem cells within the early lineage, and many rapidly proliferating transit cells with no stem cell capabilities. Apoptosis under two circumstances has a specificity for the ultimate stem cells in the small intestine and this represents, in one case, part of the stem cell homeostatic process and, in another case, a protective mechanism against DNA damage. Apoptosis occurs with a lower frequency in the large intestine owing to the expression of the bcl-2 gene in this region, and this probably contributes to the causes for the low cancer risk in the small bowel and the high risk in the large bowel. Current studies are beginning to unravel the complex interaction of growth factors and regulatory genes that determine whether a cell divides, differentiates or dies.

Full Text

The Full Text of this article is available as a PDF (418.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaulieu J. F. Differential expression of the VLA family of integrins along the crypt-villus axis in the human small intestine. J Cell Sci. 1992 Jul;102(Pt 3):427–436. doi: 10.1242/jcs.102.3.427. [DOI] [PubMed] [Google Scholar]
  2. Cai W. B., Roberts S. A., Potten C. S. The number of clonogenic cells in crypts in three regions of murine large intestine. Int J Radiat Biol. 1997 May;71(5):573–579. doi: 10.1080/095530097143905. [DOI] [PubMed] [Google Scholar]
  3. Hendry J. H., Roberts S. A., Potten C. S. The clonogen content of murine intestinal crypts: dependence on radiation dose used in its determination. Radiat Res. 1992 Oct;132(1):115–119. [PubMed] [Google Scholar]
  4. Hermiston M. L., Gordon J. I. In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J Cell Biol. 1995 Apr;129(2):489–506. doi: 10.1083/jcb.129.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ijiri K., Potten C. S. Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer. 1987 Feb;55(2):113–123. doi: 10.1038/bjc.1987.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaur P., Potten C. S. Cell migration velocities in the crypts of the small intestine after cytotoxic insult are not dependent on mitotic activity. Cell Tissue Kinet. 1986 Nov;19(6):601–610. doi: 10.1111/j.1365-2184.1986.tb00761.x. [DOI] [PubMed] [Google Scholar]
  7. Merritt A. J., Allen T. D., Potten C. S., Hickman J. A. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene. 1997 Jun 12;14(23):2759–2766. doi: 10.1038/sj.onc.1201126. [DOI] [PubMed] [Google Scholar]
  8. Merritt A. J., Potten C. S., Kemp C. J., Hickman J. A., Balmain A., Lane D. P., Hall P. A. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 1994 Feb 1;54(3):614–617. [PubMed] [Google Scholar]
  9. Merritt A. J., Potten C. S., Watson A. J., Loh D. Y., Nakayama K., Nakayama K., Hickman J. A. Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci. 1995 Jun;108(Pt 6):2261–2271. doi: 10.1242/jcs.108.6.2261. [DOI] [PubMed] [Google Scholar]
  10. Potten C. S., Booth C., Pritchard D. M. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol. 1997 Aug;78(4):219–243. doi: 10.1046/j.1365-2613.1997.280362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Potten C. S. Epithelial cell growth and differentiation. II. Intestinal apoptosis. Am J Physiol. 1997 Aug;273(2 Pt 1):G253–G257. doi: 10.1152/ajpgi.1997.273.2.G253. [DOI] [PubMed] [Google Scholar]
  12. Potten C. S. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature. 1977 Oct 6;269(5628):518–521. doi: 10.1038/269518a0. [DOI] [PubMed] [Google Scholar]
  13. Potten C. S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 Dec;110(4):1001–1020. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
  14. Potten C. S. The role of stem cells in the regeneration of intestinal crypts after cytotoxic exposure. Prog Clin Biol Res. 1991;369:155–171. [PubMed] [Google Scholar]
  15. Potten C. S. The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Rev. 1992 Sep;11(2):179–195. doi: 10.1007/BF00048063. [DOI] [PubMed] [Google Scholar]
  16. Pritchard D. M., Watson A. J., Potten C. S., Jackman A. L., Hickman J. A. Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1795–1799. doi: 10.1073/pnas.94.5.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Probstmeier R., Martini R., Tacke R., Schachner M. Expression of the adhesion molecules L1, N-CAM and J1/tenascin during development of the murine small intestine. Differentiation. 1990 Jul;44(1):42–55. doi: 10.1111/j.1432-0436.1990.tb00535.x. [DOI] [PubMed] [Google Scholar]
  18. Qiu J. M., Roberts S. A., Potten C. S. Cell migration in the small and large bowel shows a strong circadian rhythm. Epithelial Cell Biol. 1994;3(4):137–148. [PubMed] [Google Scholar]
  19. Simo P., Simon-Assmann P., Bouziges F., Leberquier C., Kedinger M., Ekblom P., Sorokin L. Changes in the expression of laminin during intestinal development. Development. 1991 Jun;112(2):477–487. doi: 10.1242/dev.112.2.477. [DOI] [PubMed] [Google Scholar]
  20. Watson A. J., Merritt A. J., Jones L. S., Askew J. N., Anderson E., Becciolini A., Balzi M., Potten C. S., Hickman J. A. Evidence of reciprocity of bcl-2 and p53 expression in human colorectal adenomas and carcinomas. Br J Cancer. 1996 Apr;73(8):889–895. doi: 10.1038/bjc.1996.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Winton D. J., Blount M. A., Ponder B. A. A clonal marker induced by mutation in mouse intestinal epithelium. Nature. 1988 Jun 2;333(6172):463–466. doi: 10.1038/333463a0. [DOI] [PubMed] [Google Scholar]
  22. Withers H. R., Elkind M. M. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;17(3):261–267. doi: 10.1080/09553007014550291. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES