Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Jun 29;353(1370):911–914. doi: 10.1098/rstb.1998.0255

Control of gene expression in intestinal epithelial cells.

P G Traber 1
PMCID: PMC1692282  PMID: 9684288

Abstract

Coordination of gene transcription is a critical regulatory step in orchestrating developmental, differentiation and adaptation processes in the mammalian intestinal epithelium. Insight into these mechanisms has been gained by the study of transcriptional regulation of the sucrase-isomaltase gene. An understanding of the regulatory network of nuclear proteins that direct transcriptional initiation of intestinal genes such as sucrase-isomaltase will provide insight into the mechanisms of normal development and differentiation as well as disease processes such as neoplasia.

Full Text

The Full Text of this article is available as a PDF (105.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chawengsaksophak K., James R., Hammond V. E., Köntgen F., Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997 Mar 6;386(6620):84–87. doi: 10.1038/386084a0. [DOI] [PubMed] [Google Scholar]
  2. Ee H. C., Erler T., Bhathal P. S., Young G. P., James R. J. Cdx-2 homeodomain protein expression in human and rat colorectal adenoma and carcinoma. Am J Pathol. 1995 Sep;147(3):586–592. [PMC free article] [PubMed] [Google Scholar]
  3. Festenstein R., Tolaini M., Corbella P., Mamalaki C., Parrington J., Fox M., Miliou A., Jones M., Kioussis D. Locus control region function and heterochromatin-induced position effect variegation. Science. 1996 Feb 23;271(5252):1123–1125. doi: 10.1126/science.271.5252.1123. [DOI] [PubMed] [Google Scholar]
  4. Forrester W. C., van Genderen C., Jenuwein T., Grosschedl R. Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science. 1994 Aug 26;265(5176):1221–1225. doi: 10.1126/science.8066460. [DOI] [PubMed] [Google Scholar]
  5. Henning S. J. Ontogeny of enzymes in the small intestine. Annu Rev Physiol. 1985;47:231–245. doi: 10.1146/annurev.ph.47.030185.001311. [DOI] [PubMed] [Google Scholar]
  6. Mallo G. V., Rechreche H., Frigerio J. M., Rocha D., Zweibaum A., Lacasa M., Jordan B. R., Dusetti N. J., Dagorn J. C., Iovanna J. L. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int J Cancer. 1997 Feb 20;74(1):35–44. doi: 10.1002/(sici)1097-0215(19970220)74:1<35::aid-ijc7>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  7. Markowitz A. J., Wu G. D., Bader A., Cui Z., Chen L., Traber P. G. Regulation of lineage-specific transcription of the sucrase-isomaltase gene in transgenic mice and cell lines. Am J Physiol. 1995 Dec;269(6 Pt 1):G925–G939. doi: 10.1152/ajpgi.1995.269.6.G925. [DOI] [PubMed] [Google Scholar]
  8. Markowitz A. J., Wu G. D., Birkenmeier E. H., Traber P. G. The human sucrase-isomaltase gene directs complex patterns of gene expression in transgenic mice. Am J Physiol. 1993 Sep;265(3 Pt 1):G526–G539. doi: 10.1152/ajpgi.1993.265.3.G526. [DOI] [PubMed] [Google Scholar]
  9. Nanthakumar N. N., Henning S. J. Distinguishing normal and glucocorticoid-induced maturation of intestine using bromodeoxyuridine. Am J Physiol. 1995 Jan;268(1 Pt 1):G139–G145. doi: 10.1152/ajpgi.1995.268.1.G139. [DOI] [PubMed] [Google Scholar]
  10. Silberg D. G., Furth E. E., Taylor J. K., Schuck T., Chiou T., Traber P. G. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology. 1997 Aug;113(2):478–486. doi: 10.1053/gast.1997.v113.pm9247467. [DOI] [PubMed] [Google Scholar]
  11. Suh E., Chen L., Taylor J., Traber P. G. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol. 1994 Nov;14(11):7340–7351. doi: 10.1128/mcb.14.11.7340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Suh E., Traber P. G. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol. 1996 Feb;16(2):619–625. doi: 10.1128/mcb.16.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Traber P. G., Silberg D. G. Intestine-specific gene transcription. Annu Rev Physiol. 1996;58:275–297. doi: 10.1146/annurev.ph.58.030196.001423. [DOI] [PubMed] [Google Scholar]
  14. Traber P. G., Wu G. D., Wang W. Novel DNA-binding proteins regulate intestine-specific transcription of the sucrase-isomaltase gene. Mol Cell Biol. 1992 Aug;12(8):3614–3627. doi: 10.1128/mcb.12.8.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tung J., Markowitz A. J., Silberg D. G., Traber P. G. Developmental expression of SI is regulated in transgenic mice by an evolutionarily conserved promoter. Am J Physiol. 1997 Jul;273(1 Pt 1):G83–G92. doi: 10.1152/ajpgi.1997.273.1.G83. [DOI] [PubMed] [Google Scholar]
  16. Wilson C., Bellen H. J., Gehring W. J. Position effects on eukaryotic gene expression. Annu Rev Cell Biol. 1990;6:679–714. doi: 10.1146/annurev.cb.06.110190.003335. [DOI] [PubMed] [Google Scholar]
  17. Wu G. D., Chen L., Forslund K., Traber P. G. Hepatocyte nuclear factor-1 alpha (HNF-1 alpha) and HNF-1 beta regulate transcription via two elements in an intestine-specific promoter. J Biol Chem. 1994 Jun 24;269(25):17080–17085. [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES