Abstract
The efficiency of liver regeneration in response to the loss of hepatocytes is widely acknowledged, and this is usually accomplished by the triggering of normally proliferatively quiescent hepatocytes into the cell cycle. However, when regeneration is defective, tortuous ductular structures, initially continuous with the biliary tree, proliferate and migrate into the surrounding hepatocyte parenchyma. In humans, these biliary cells have variously been referred to as ductular structures, neoductules and neocholangioles, and have been observed in many forms of chronic liver disease, including cancer. In experimental animals, similar ductal cells are usually called oval cells, and their association with impaired regeneration has led to the conclusion that they are the progeny of facultative stem cells. Oval cells are of considerable biological interest as they may represent a target population for hepatic carcinogens, and they may also be useful vehicles for ex vivo gene therapy for the correction of inborn errors of metabolism. This review proposes that the liver harbours stem cells that are located in the biliary epithelium, that oval cells are the progeny of these stem cells, and that these cells can undergo massive expansion in their numbers before differentiating into hepatocytes. This is a conditional process that only occurs when the regenerative capacity of hepatocytes is overwhelmed, and thus, unlike the intestinal epithelium, the liver is not behaving as a classical, continually renewing, stem cell-fed lineage. We focus on the biliary network, not merely as a conduit for bile, but also as a cell compartment with the ability to proliferate under appropriate conditions and give rise to fully differentiated hepatocytes and other cell types.
Full Text
The Full Text of this article is available as a PDF (477.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alison M. R., Golding M., Sarraf C. E., Edwards R. J., Lalani E. N. Liver damage in the rat induces hepatocyte stem cells from biliary epithelial cells. Gastroenterology. 1996 Apr;110(4):1182–1190. doi: 10.1053/gast.1996.v110.pm8613008. [DOI] [PubMed] [Google Scholar]
- Alison M. R., Nasim M. M., Anilkumar T. V., Sarraf C. E. Transforming growth factor-alpha immunoreactivity in a variety of epithelial tissues. Cell Prolif. 1993 Sep;26(5):449–460. doi: 10.1111/j.1365-2184.1993.tb00132.x. [DOI] [PubMed] [Google Scholar]
- Alison M. R., Poulsom R., Jeffery R., Anilkumar T. V., Jagoe R., Sarraf C. E. Expression of hepatocyte growth factor mRNA during oval cell activation in the rat liver. J Pathol. 1993 Dec;171(4):291–299. doi: 10.1002/path.1711710410. [DOI] [PubMed] [Google Scholar]
- Alison M. R. Regulation of hepatic growth. Physiol Rev. 1986 Jul;66(3):499–541. doi: 10.1152/physrev.1986.66.3.499. [DOI] [PubMed] [Google Scholar]
- Alison M., Golding M., Lalani E. N., Nagy P., Thorgeirsson S., Sarraf C. Wholesale hepatocytic differentiation in the rat from ductular oval cells, the progeny of biliary stem cells. J Hepatol. 1997 Feb;26(2):343–352. doi: 10.1016/s0168-8278(97)80051-7. [DOI] [PubMed] [Google Scholar]
- Alpini G., Aragona E., Dabeva M., Salvi R., Shafritz D. A., Tavoloni N. Distribution of albumin and alpha-fetoprotein mRNAs in normal, hyperplastic, and preneoplastic rat liver. Am J Pathol. 1992 Sep;141(3):623–632. [PMC free article] [PubMed] [Google Scholar]
- Alpini G., Glaser S., Robertson W., Rodgers R. E., Phinizy J. L., Lasater J., LeSage G. D. Large but not small intrahepatic bile ducts are involved in secretin-regulated ductal bile secretion. Am J Physiol. 1997 May;272(5 Pt 1):G1064–G1074. doi: 10.1152/ajpgi.1997.272.5.G1064. [DOI] [PubMed] [Google Scholar]
- Alpini G., Roberts S., Kuntz S. M., Ueno Y., Gubba S., Podila P. V., LeSage G., LaRusso N. F. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology. 1996 May;110(5):1636–1643. doi: 10.1053/gast.1996.v110.pm8613073. [DOI] [PubMed] [Google Scholar]
- Anilkumar T. V., Golding M., Edwards R. J., Lalani E. N., Sarraf C. E., Alison M. R. The resistant hepatocyte model of carcinogenesis in the rat: the apparent independent development of oval cell proliferation and early nodules. Carcinogenesis. 1995 Apr;16(4):845–853. doi: 10.1093/carcin/16.4.845. [DOI] [PubMed] [Google Scholar]
- Arthur M. J., Friedman S. L., Roll F. J., Bissell D. M. Lipocytes from normal rat liver release a neutral metalloproteinase that degrades basement membrane (type IV) collagen. J Clin Invest. 1989 Oct;84(4):1076–1085. doi: 10.1172/JCI114270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arthur M. J., Iredale J. P. Hepatic lipocytes, TIMP-1 and liver fibrosis. J R Coll Physicians Lond. 1994 May-Jun;28(3):200–208. [PMC free article] [PubMed] [Google Scholar]
- Aterman K. The stem cells of the liver--a selective review. J Cancer Res Clin Oncol. 1992;118(2):87–115. doi: 10.1007/BF01187498. [DOI] [PubMed] [Google Scholar]
- Barros E. J., Santos O. F., Matsumoto K., Nakamura T., Nigam S. K. Differential tubulogenic and branching morphogenetic activities of growth factors: implications for epithelial tissue development. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4412–4416. doi: 10.1073/pnas.92.10.4412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betto H., Kaneda K., Yamamoto T., Kojima A., Sakurai M. Development of intralobular bile ductules after spontaneous hepatitis in Long-Evans mutant rats. Lab Invest. 1996 Jul;75(1):43–53. [PubMed] [Google Scholar]
- Bhathal P. S., Christie G. S. A fluorescence microscopic study of bile duct proliferation induced in guinea pigs by alpha-naphthyl isothiocyanate. Lab Invest. 1969 May;20(5):480–487. [PubMed] [Google Scholar]
- Bisgaard H. C., Nagy P., Santoni-Rugiu E., Thorgeirsson S. S. Proliferation, apoptosis, and induction of hepatic transcription factors are characteristics of the early response of biliary epithelial (oval) cells to chemical carcinogens. Hepatology. 1996 Jan;23(1):62–70. doi: 10.1002/hep.510230110. [DOI] [PubMed] [Google Scholar]
- Bisgaard H. C., Nagy P., Ton P. T., Hu Z., Thorgeirsson S. S. Modulation of keratin 14 and alpha-fetoprotein expression during hepatic oval cell proliferation and liver regeneration. J Cell Physiol. 1994 Jun;159(3):475–484. doi: 10.1002/jcp.1041590312. [DOI] [PubMed] [Google Scholar]
- Blouin M. J., Lamy I., Loranger A., Noël M., Corlu A., Guguen-Guillouzo C., Marceau N. Specialization switch in differentiating embryonic rat liver progenitor cells in response to sodium butyrate. Exp Cell Res. 1995 Mar;217(1):22–30. doi: 10.1006/excr.1995.1059. [DOI] [PubMed] [Google Scholar]
- Blouin R., Blouin M. J., Royal I., Grenier A., Roop D. R., Loranger A., Marceau N. Cytokeratin 14 expression in rat liver cells in culture and localization in vivo. Differentiation. 1992 Dec;52(1):45–54. doi: 10.1111/j.1432-0436.1992.tb00498.x. [DOI] [PubMed] [Google Scholar]
- Bralet M. P., Branchereau S., Brechot C., Ferry N. Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am J Pathol. 1994 May;144(5):896–905. [PMC free article] [PubMed] [Google Scholar]
- Brill S., Holst P., Sigal S., Zvibel I., Fiorino A., Ochs A., Somasundaran U., Reid L. M. Hepatic progenitor populations in embryonic, neonatal, and adult liver. Proc Soc Exp Biol Med. 1993 Dec;204(3):261–269. doi: 10.3181/00379727-204-43662. [DOI] [PubMed] [Google Scholar]
- Brinkmann V., Foroutan H., Sachs M., Weidner K. M., Birchmeier W. Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J Cell Biol. 1995 Dec;131(6 Pt 1):1573–1586. doi: 10.1083/jcb.131.6.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burr A. W., Carpenter M. R., Hines J. E., Gullick W. J., Burt A. D. Intrahepatic distribution of transforming growth factor-alpha (TGF alpha) during liver regeneration following carbon tetrachloride-induced necrosis. J Pathol. 1993 May;170(1):95–100. doi: 10.1002/path.1711700115. [DOI] [PubMed] [Google Scholar]
- Burt A. D., MacSween R. N. Bile duct proliferation--its true significance? Histopathology. 1993 Dec;23(6):599–602. doi: 10.1111/j.1365-2559.1993.tb01258.x. [DOI] [PubMed] [Google Scholar]
- Cabrera J. A., Wilson J. M., Raper S. E. Targeted retroviral gene transfer into the rat biliary tract. Somat Cell Mol Genet. 1996 Jan;22(1):21–29. doi: 10.1007/BF02374373. [DOI] [PubMed] [Google Scholar]
- Calnek D., Quaroni A. Differential localization by in situ hybridization of distinct keratin mRNA species during intestinal epithelial cell development and differentiation. Differentiation. 1993 Jun;53(2):95–104. doi: 10.1111/j.1432-0436.1993.tb00649.x. [DOI] [PubMed] [Google Scholar]
- Carthew P., Edwards R. E., Hill R. J., Evans J. G. Cytokeratin expression in cells of the rodent bile duct developing under normal and pathological conditions. Br J Exp Pathol. 1989 Dec;70(6):717–725. [PMC free article] [PubMed] [Google Scholar]
- Chen J. R., Tsao M. S., Duguid W. P. Hepatocytic differentiation of cultured rat pancreatic ductal epithelial cells after in vivo implantation. Am J Pathol. 1995 Sep;147(3):707–717. [PMC free article] [PubMed] [Google Scholar]
- Chu Y. W., Seftor E. A., Romer L. H., Hendrix M. J. Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am J Pathol. 1996 Jan;148(1):63–69. [PMC free article] [PubMed] [Google Scholar]
- Cocjin J., Rosenthal P., Buslon V., Luk L., Jr, Barajas L., Geller S. A., Ruebner B., French S. Bile ductule formation in fetal, neonatal, and infant livers compared with extrahepatic biliary atresia. Hepatology. 1996 Sep;24(3):568–574. doi: 10.1002/hep.510240318. [DOI] [PubMed] [Google Scholar]
- Coleman W. B., Wennerberg A. E., Smith G. J., Grisham J. W. Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am J Pathol. 1993 May;142(5):1373–1382. [PMC free article] [PubMed] [Google Scholar]
- Dabeva M. D., Alpini G., Hurston E., Shafritz D. A. Models for hepatic progenitor cell activation. Proc Soc Exp Biol Med. 1993 Dec;204(3):242–252. doi: 10.3181/00379727-204-43660. [DOI] [PubMed] [Google Scholar]
- Dabeva M. D., Shafritz D. A. Activation, proliferation, and differentiation of progenitor cells into hepatocytes in the D-galactosamine model of liver regeneration. Am J Pathol. 1993 Dec;143(6):1606–1620. [PMC free article] [PubMed] [Google Scholar]
- De Vos R., Desmet V. Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction. Am J Pathol. 1992 Jun;140(6):1441–1450. [PMC free article] [PubMed] [Google Scholar]
- Delladetsima J. K., Kyriakou V., Vafiadis I., Karakitsos P., Smyrnoff T., Tassopoulos N. C. Ductular structures in acute hepatitis with panacinar necrosis. J Pathol. 1995 Jan;175(1):69–76. doi: 10.1002/path.1711750111. [DOI] [PubMed] [Google Scholar]
- Dunsford H. A., Maset R., Salman J., Sell S. Connection of ductlike structures induced by a chemical hepatocarcinogen to portal bile ducts in the rat liver detected by injection of bile ducts with a pigmented barium gelatin medium. Am J Pathol. 1985 Feb;118(2):218–224. [PMC free article] [PubMed] [Google Scholar]
- Elmore L. W., Sirica A. E. "Intestinal-type" of adenocarcinoma preferentially induced in right/caudate liver lobes of rats treated with furan. Cancer Res. 1993 Jan 15;53(2):254–259. [PubMed] [Google Scholar]
- Elmore L. W., Sirica A. E. Phenotypic characterization of metaplastic intestinal glands and ductular hepatocytes in cholangiofibrotic lesions rapidly induced in the caudate liver lobe of rats treated with furan. Cancer Res. 1991 Oct 15;51(20):5752–5759. [PubMed] [Google Scholar]
- Elmore L. W., Sirica A. E. Sequential appearance of intestinal mucosal cell types in the right and caudate liver lobes of furan-treated rats. Hepatology. 1992 Nov;16(5):1220–1226. [PubMed] [Google Scholar]
- Engelhardt N. V., Baranov V. N., Lazareva M. N., Goussev A. I. Ultrastructural localisation of alpha-fetoprotin (AFP) in regenerating mouse liver poisoned with CCL4. 1. Reexpression of AFP in differentiated hepatocytes. Histochemistry. 1984;80(4):401–407. doi: 10.1007/BF00495425. [DOI] [PubMed] [Google Scholar]
- Engelhardt N. V., Factor V. M., Yasova A. K., Poltoranina V. S., Baranov V. N., Lasareva M. N. Common antigens of mouse oval and biliary epithelial cells. Expression on newly formed hepatocytes. Differentiation. 1990 Oct;45(1):29–37. doi: 10.1111/j.1432-0436.1990.tb00453.x. [DOI] [PubMed] [Google Scholar]
- Enjoji M., Nakashima M., Honda M., Sakai H., Nawata H. Hepatocytic phenotypes induced in sarcomatous cholangiocarcinoma cells treated with 5-azacytidine. Hepatology. 1997 Aug;26(2):288–294. doi: 10.1002/hep.510260206. [DOI] [PubMed] [Google Scholar]
- Enomoto K., Dempo K., Mori M., Onoé T. Histopathological and ultrastructural study on extramedullary hematopoietic foci in early stage of 3'-methyl-4-(dimethylamino)azobenzene hepatocarcinogenesis. Gan. 1978 Apr;69(2):249–254. [PubMed] [Google Scholar]
- Evarts R. P., Hu Z., Fujio K., Marsden E. R., Thorgeirsson S. S. Activation of hepatic stem cell compartment in the rat: role of transforming growth factor alpha, hepatocyte growth factor, and acidic fibroblast growth factor in early proliferation. Cell Growth Differ. 1993 Jul;4(7):555–561. [PubMed] [Google Scholar]
- Evarts R. P., Nagy P., Marsden E., Thorgeirsson S. S. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis. 1987 Nov;8(11):1737–1740. doi: 10.1093/carcin/8.11.1737. [DOI] [PubMed] [Google Scholar]
- Evarts R. P., Nagy P., Nakatsukasa H., Marsden E., Thorgeirsson S. S. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 1989 Mar 15;49(6):1541–1547. [PubMed] [Google Scholar]
- Evarts R. P., Nakatsukasa H., Marsden E. R., Hsia C. C., Dunsford H. A., Thorgeirsson S. S. Cellular and molecular changes in the early stages of chemical hepatocarcinogenesis in the rat. Cancer Res. 1990 Jun 1;50(11):3439–3444. [PubMed] [Google Scholar]
- Evarts R. P., Nakatsukasa H., Marsden E. R., Hu Z., Thorgeirsson S. S. Expression of transforming growth factor-alpha in regenerating liver and during hepatic differentiation. Mol Carcinog. 1992;5(1):25–31. doi: 10.1002/mc.2940050107. [DOI] [PubMed] [Google Scholar]
- FARBER E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3'-methyl-4-dimethylaminoazobenzene. Cancer Res. 1956 Feb;16(2):142–148. [PubMed] [Google Scholar]
- Fabrikant J. I. The kinetics of cellular proliferation in regenerating liver. J Cell Biol. 1968 Mar;36(3):551–565. doi: 10.1083/jcb.36.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Factor V. M., Radaeva S. A., Thorgeirsson S. S. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol. 1994 Aug;145(2):409–422. [PMC free article] [PubMed] [Google Scholar]
- Fausto N., Lemire J. M., Shiojiri N. Cell lineages in hepatic development and the identification of progenitor cells in normal and injured liver. Proc Soc Exp Biol Med. 1993 Dec;204(3):237–241. doi: 10.3181/00379727-204-43659. [DOI] [PubMed] [Google Scholar]
- Flint N., Pemberton P. W., Lobley R. W., Evans G. S. Cytokeratin expression in epithelial cells isolated from the crypt and villus regions of the rodent small intestine. Epithelial Cell Biol. 1994 Jan;3(1):16–23. [PubMed] [Google Scholar]
- Fujio K., Evarts R. P., Hu Z., Marsden E. R., Thorgeirsson S. S. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest. 1994 Apr;70(4):511–516. [PubMed] [Google Scholar]
- GRISHAM J. W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962 Aug;22:842–849. [PubMed] [Google Scholar]
- GRISHAM J. W., PORTA E. A. ORIGIN AND FATE OF PROLIFERATED HEPATIC DUCTAL CELLS IN THE RAT: ELECTRON MICROSCOPIC AND AUTORADIOGRAPHIC STUDIES. Exp Mol Pathol. 1964 Jun;86:242–261. doi: 10.1016/0014-4800(64)90057-7. [DOI] [PubMed] [Google Scholar]
- Galimi F., Bagnara G. P., Bonsi L., Cottone E., Follenzi A., Simeone A., Comoglio P. M. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors. J Cell Biol. 1994 Dec;127(6 Pt 1):1743–1754. doi: 10.1083/jcb.127.6.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garfield S., Huber B. E., Nagy P., Cordingley M. G., Thorgeirsson S. S. Neoplastic transformation and lineage switching of rat liver epithelial cells by retrovirus-associated oncogenes. Mol Carcinog. 1988;1(3):189–195. doi: 10.1002/mc.2940010307. [DOI] [PubMed] [Google Scholar]
- Gerlach C., Sakkab D. Y., Scholzen T., Dassler R., Alison M. R., Gerdes J. Ki-67 expression during rat liver regeneration after partial hepatectomy. Hepatology. 1997 Sep;26(3):573–578. doi: 10.1002/hep.510260307. [DOI] [PubMed] [Google Scholar]
- Germain L., Blouin M. J., Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 1988 Sep 1;48(17):4909–4918. [PubMed] [Google Scholar]
- Germain L., Goyette R., Marceau N. Differential cytokeratin and alpha-fetoprotein expression in morphologically distinct epithelial cells emerging at the early stage of rat hepatocarcinogenesis. Cancer Res. 1985 Feb;45(2):673–681. [PubMed] [Google Scholar]
- Germain L., Noël M., Gourdeau H., Marceau N. Promotion of growth and differentiation of rat ductular oval cells in primary culture. Cancer Res. 1988 Jan 15;48(2):368–378. [PubMed] [Google Scholar]
- Ghoshal A. K., Mullen B., Medline A., Farber E. Sequential analysis of hepatic carcinogenesis. Regeneration of liver after carbon tetrachloride-induced liver necrosis when hepatocyte proliferation is inhibited by 2-acetylaminofluorene. Lab Invest. 1983 Feb;48(2):224–230. [PubMed] [Google Scholar]
- Gilles C., Polette M., Piette J., Delvigne A. C., Thompson E. W., Foidart J. M., Birembaut P. Vimentin expression in cervical carcinomas: association with invasive and migratory potential. J Pathol. 1996 Oct;180(2):175–180. doi: 10.1002/(SICI)1096-9896(199610)180:2<175::AID-PATH630>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Golding M., Sarraf C. E., Lalani E. N., Anilkumar T. V., Edwards R. J., Nagy P., Thorgeirsson S. S., Alison M. R. Oval cell differentiation into hepatocytes in the acetylaminofluorene-treated regenerating rat liver. Hepatology. 1995 Oct;22(4 Pt 1):1243–1253. doi: 10.1016/0270-9139(95)90635-5. [DOI] [PubMed] [Google Scholar]
- Griffiths M. R., Shepherd M., Ferrier R., Schuppan D., James O. F., Burt A. D. Light microscopic and ultrastructural distribution of type VI collagen in human liver: alterations in chronic biliary disease. Histopathology. 1992 Oct;21(4):335–344. doi: 10.1111/j.1365-2559.1992.tb00404.x. [DOI] [PubMed] [Google Scholar]
- Grisham J. W. Cell types in long-term propagable cultures of rat liver. Ann N Y Acad Sci. 1980;349:128–137. doi: 10.1111/j.1749-6632.1980.tb29521.x. [DOI] [PubMed] [Google Scholar]
- Grisham J. W., Coleman W. B., Smith G. J. Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proc Soc Exp Biol Med. 1993 Dec;204(3):270–279. doi: 10.3181/00379727-204-43663. [DOI] [PubMed] [Google Scholar]
- Grisham J. W. Migration of hepatocytes along hepatic plates and stem cell-fed hepatocyte lineages. Am J Pathol. 1994 May;144(5):849–854. [PMC free article] [PubMed] [Google Scholar]
- Gualdi R., Bossard P., Zheng M., Hamada Y., Coleman J. R., Zaret K. S. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996 Jul 1;10(13):1670–1682. doi: 10.1101/gad.10.13.1670. [DOI] [PubMed] [Google Scholar]
- Haque S., Haruna Y., Saito K., Nalesnik M. A., Atillasoy E., Thung S. N., Gerber M. A. Identification of bipotential progenitor cells in human liver regeneration. Lab Invest. 1996 Nov;75(5):699–705. [PubMed] [Google Scholar]
- Haruna Y., Saito K., Spaulding S., Nalesnik M. A., Gerber M. A. Identification of bipotential progenitor cells in human liver development. Hepatology. 1996 Mar;23(3):476–481. doi: 10.1002/hep.510230312. [DOI] [PubMed] [Google Scholar]
- Hayner N. T., Braun L., Yaswen P., Brooks M., Fausto N. Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers. Cancer Res. 1984 Jan;44(1):332–338. [PubMed] [Google Scholar]
- He X. Y., Smith G. J., Enno A., Nicholson R. C. Short-term diethylnitrosamine-induced oval cell responses in three strains of mice. Pathology. 1994 Apr;26(2):154–160. doi: 10.1080/00313029400169401. [DOI] [PubMed] [Google Scholar]
- Hendrix M. J., Seftor E. A., Seftor R. E., Trevor K. T. Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol. 1997 Feb;150(2):483–495. [PMC free article] [PubMed] [Google Scholar]
- Hiruma M., Seki A., Ono A., Kurihara T. Early hepatic lesions with marked glandular structures induced in rats by 0.1% ethionine in a choline deficient diet. Jikken Dobutsu. 1993 Apr;42(2):197–201. doi: 10.1538/expanim1978.42.2_197. [DOI] [PubMed] [Google Scholar]
- Hsia C. C., Evarts R. P., Nakatsukasa H., Marsden E. R., Thorgeirsson S. S. Occurrence of oval-type cells in hepatitis B virus-associated human hepatocarcinogenesis. Hepatology. 1992 Dec;16(6):1327–1333. doi: 10.1002/hep.1840160604. [DOI] [PubMed] [Google Scholar]
- Hu Z., Evarts R. P., Fujio K., Marsden E. R., Thorgeirsson S. S. Expression of hepatocyte growth factor and c-met genes during hepatic differentiation and liver development in the rat. Am J Pathol. 1993 Jun;142(6):1823–1830. [PMC free article] [PubMed] [Google Scholar]
- Huitfeldt H. S., Brandtzaeg P., Poirier M. C. Carcinogen-induced alterations in rat liver DNA adduct formation determined by computerized fluorescent image analysis. Lab Invest. 1991 Feb;64(2):207–214. [PubMed] [Google Scholar]
- Huitfeldt H. S., Brandtzaeg P., Poirier M. C. Reduced DNA adduct formation in replicating liver cells during continuous feeding of a chemical carcinogen. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5955–5958. doi: 10.1073/pnas.87.15.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfer D., Drenckhahn D. Cytoskeletal markers allowing discrimination between brush cells and other epithelial cells of the gut including enteroendocrine cells. Histochem Cell Biol. 1996 May;105(5):405–412. doi: 10.1007/BF01463662. [DOI] [PubMed] [Google Scholar]
- Ide H., Subbarao V., Reddy J. K., Rao M. S. Formation of ductular structures in vitro by rat pancreatic epithelial oval cells. Exp Cell Res. 1993 Nov;209(1):38–44. doi: 10.1006/excr.1993.1282. [DOI] [PubMed] [Google Scholar]
- Ishikura H., Ishiguro T., Enatsu C., Fujii H., Kakuta Y., Kanda M., Yoshiki T. Hepatoid adenocarcinoma of the renal pelvis producing alpha-fetoprotein of hepatic type and bile pigment. Cancer. 1991 Jun 15;67(12):3051–3056. doi: 10.1002/1097-0142(19910615)67:12<3051::aid-cncr2820671220>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
- Ishikura H., Kirimoto K., Shamoto M., Miyamoto Y., Yamagiwa H., Itoh T., Aizawa M. Hepatoid adenocarcinomas of the stomach. An analysis of seven cases. Cancer. 1986 Jul 1;58(1):119–126. doi: 10.1002/1097-0142(19860701)58:1<119::aid-cncr2820580121>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Jamison K. C., Larson J. L., Butterworth B. E., Harden R., Skinner B. L., Wolf D. C. A non-bile duct origin for intestinal crypt-like ducts with periductular fibrosis induced in livers of F344 rats by chloroform inhalation. Carcinogenesis. 1996 Apr;17(4):675–682. doi: 10.1093/carcin/17.4.675. [DOI] [PubMed] [Google Scholar]
- Johnson S. J., Hines J. E., Burt A. D. Macrophage and perisinusoidal cell kinetics in acute liver injury. J Pathol. 1992 Apr;166(4):351–358. doi: 10.1002/path.1711660406. [DOI] [PubMed] [Google Scholar]
- Joplin R., Hishida T., Tsubouchi H., Daikuhara Y., Ayres R., Neuberger J. M., Strain A. J. Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor. J Clin Invest. 1992 Oct;90(4):1284–1289. doi: 10.1172/JCI115992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karaki Y., Munakata S., Saeki T., Hirota S., Fujimaki M. Appearance of a carcinoid-like pattern in rat hepatic tumors induced by 3'-methyl-4-dimethyl-aminoazobenzene. Jpn J Cancer Res. 1991 Apr;82(4):397–402. doi: 10.1111/j.1349-7006.1991.tb01862.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy S., Rettinger S., Flye M. W., Ponder K. P. Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology. 1995 Jul;22(1):160–168. [PubMed] [Google Scholar]
- Keshet E., Lyman S. D., Williams D. E., Anderson D. M., Jenkins N. A., Copeland N. G., Parada L. F. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J. 1991 Sep;10(9):2425–2435. doi: 10.1002/j.1460-2075.1991.tb07782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koukoulis G., Rayner A., Tan K. C., Williams R., Portmann B. Immunolocalization of regenerating cells after submassive liver necrosis using PCNA staining. J Pathol. 1992 Apr;166(4):359–368. doi: 10.1002/path.1711660407. [DOI] [PubMed] [Google Scholar]
- Kroese E. D., Bannenberg G., Dogterom P., Noach A. B., Nagelkerke J. F., Meerman J. H. Lipid peroxidation and protein thiol depletion are not involved in the cytotoxicity of N-hydroxy-2-acetylaminofluorene in isolated rat hepatocytes. Biochem Pharmacol. 1990 Oct 15;40(8):1885–1892. doi: 10.1016/0006-2952(90)90370-z. [DOI] [PubMed] [Google Scholar]
- Kurumaya H., Ohta G., Nakanuma Y. Endocrine cells in the intrahepatic biliary tree in normal livers and hepatolithiasis. Arch Pathol Lab Med. 1989 Feb;113(2):143–147. [PubMed] [Google Scholar]
- Ledda G. M., Sells M. A., Yokoyama S., Lombardi B. Metabolic properties of isolated rat liver cell preparations enriched in epithelial cells other than hepatocytes. Int J Cancer. 1983 Feb 15;31(2):231–237. doi: 10.1002/ijc.2910310217. [DOI] [PubMed] [Google Scholar]
- Lee J. H., Rim H. J., Sell S. Heterogeneity of the "oval-cell" response in the hamster liver during cholangiocarcinogenesis following Clonorchis sinensis infection and dimethylnitrosamine treatment. J Hepatol. 1997 Jun;26(6):1313–1323. doi: 10.1016/s0168-8278(97)80467-9. [DOI] [PubMed] [Google Scholar]
- Lemire J. M., Fausto N. Multiple alpha-fetoprotein RNAs in adult rat liver: cell type-specific expression and differential regulation. Cancer Res. 1991 Sep 1;51(17):4656–4664. [PubMed] [Google Scholar]
- Lemire J. M., Shiojiri N., Fausto N. Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. Am J Pathol. 1991 Sep;139(3):535–552. [PMC free article] [PubMed] [Google Scholar]
- Lenzi R., Liu M. H., Tarsetti F., Slott P. A., Alpini G., Zhai W. R., Paronetto F., Lenzen R., Tavoloni N. Histogenesis of bile duct-like cells proliferating during ethionine hepatocarcinogenesis. Evidence for a biliary epithelial nature of oval cells. Lab Invest. 1992 Mar;66(3):390–402. [PubMed] [Google Scholar]
- Makino Y., Yamamoto K., Tsuji T. Three-dimensional arrangement of ductular structures formed by oval cells during hepatocarcinogenesis. Acta Med Okayama. 1988 Jun;42(3):143–150. doi: 10.18926/AMO/31029. [DOI] [PubMed] [Google Scholar]
- Marceau N. Cell lineages and differentiation programs in epidermal, urothelial and hepatic tissues and their neoplasms. Lab Invest. 1990 Jul;63(1):4–20. [PubMed] [Google Scholar]
- Marceau N. Epithelial cell lineages in developing, restoring, and transforming liver: evidence for the existence of a 'differentiation window'. Gut. 1994 Mar;35(3):294–296. doi: 10.1136/gut.35.3.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marceau N., Germain L., Goyette R., Noël M., Gourdeau H. Cell of origin of distinct cultured rat liver epithelial cells, as typed by cytokeratin and surface component selective expression. Biochem Cell Biol. 1986 Aug;64(8):788–802. doi: 10.1139/o86-107. [DOI] [PubMed] [Google Scholar]
- Marsden E. R., Hu Z., Fujio K., Nakatsukasa H., Thorgeirsson S. S., Evarts R. P. Expression of acidic fibroblast growth factor in regenerating liver and during hepatic differentiation. Lab Invest. 1992 Oct;67(4):427–433. [PubMed] [Google Scholar]
- Martinez-Hernandez A., Amenta P. S. The extracellular matrix in hepatic regeneration. FASEB J. 1995 Nov;9(14):1401–1410. doi: 10.1096/fasebj.9.14.7589981. [DOI] [PubMed] [Google Scholar]
- Mathis G. A., Walls S. A., D'Amico P., Gengo T. F., Sirica A. E. Enzyme profile of rat bile ductular epithelial cells in reference to the resistance phenotype in hepatocarcinogenesis. Hepatology. 1989 Mar;9(3):477–485. doi: 10.1002/hep.1840090323. [DOI] [PubMed] [Google Scholar]
- Meybehm M., Fischer H. P., Pfeifer U. Expression of HBs- and HBc-antigen in neoductular epithelium in chronic active hepatitis B. A further support for hepato-ductular metaplasia. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63(3):167–172. doi: 10.1007/BF02899257. [DOI] [PubMed] [Google Scholar]
- Miettinen P. J., Ebner R., Lopez A. R., Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994 Dec;127(6 Pt 2):2021–2036. doi: 10.1083/jcb.127.6.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milani S., Herbst H., Schuppan D., Niedobitek G., Kim K. Y., Stein H. Vimentin expression of newly formed rat bile duct epithelial cells in secondary biliary fibrosis. Virchows Arch A Pathol Anat Histopathol. 1989;415(3):237–242. doi: 10.1007/BF00724910. [DOI] [PubMed] [Google Scholar]
- Milani S., Herbst H., Schuppan D., Stein H., Surrenti C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am J Pathol. 1991 Dec;139(6):1221–1229. [PMC free article] [PubMed] [Google Scholar]
- Mitaka T., Norioka K., Nakamura T., Mochizuki Y. Effects of mitogens and co-mitogens on the formation of small-cell colonies in primary cultures of rat hepatocytes. J Cell Physiol. 1993 Dec;157(3):461–468. doi: 10.1002/jcp.1041570305. [DOI] [PubMed] [Google Scholar]
- Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
- Nagy P., Bisgaard H. C., Thorgeirsson S. S. Expression of hepatic transcription factors during liver development and oval cell differentiation. J Cell Biol. 1994 Jul;126(1):223–233. doi: 10.1083/jcb.126.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagy P., Evarts R. P., McMahon J. B., Thorgeirsson S. S. Role of TGF-beta in normal differentiation and oncogenesis in rat liver. Mol Carcinog. 1989;2(6):345–354. doi: 10.1002/mc.2940020609. [DOI] [PubMed] [Google Scholar]
- Nomoto M., Uchikosi Y., Kajikazawa N., Tanaka Y., Asakura H. Appearance of hepatocytelike cells in the interlobular bile ducts of human liver in various liver disease states. Hepatology. 1992 Nov;16(5):1199–1205. [PubMed] [Google Scholar]
- Novikoff P. M., Ikeda T., Hixson D. C., Yam A. Characterizations of and interactions between bile ductule cells and hepatocytes in early stages of rat hepatocarcinogenesis induced by ethionine. Am J Pathol. 1991 Dec;139(6):1351–1368. [PMC free article] [PubMed] [Google Scholar]
- Novikoff P. M., Yam A., Oikawa I. Blast-like cell compartment in carcinogen-induced proliferating bile ductules. Am J Pathol. 1996 May;148(5):1473–1492. [PMC free article] [PubMed] [Google Scholar]
- Omori M., Evarts R. P., Omori N., Hu Z., Marsden E. R., Thorgeirsson S. S. Expression of alpha-fetoprotein and stem cell factor/c-kit system in bile duct ligated young rats. Hepatology. 1997 May;25(5):1115–1122. doi: 10.1002/hep.510250512. [DOI] [PubMed] [Google Scholar]
- Onoé T., Kaneko A., Dempo K., Ogawa K., Minase T. Alpha-Fetoprotein and early histological changes of hepatic tissue in DAB-hepatocarcinogenesis. Ann N Y Acad Sci. 1975 Aug 22;259:168–180. doi: 10.1111/j.1749-6632.1975.tb25412.x. [DOI] [PubMed] [Google Scholar]
- Pagan R., Llobera M., Vilaró S. Epithelial-mesenchymal transition in cultured neonatal hepatocytes. Hepatology. 1995 Mar;21(3):820–831. [PubMed] [Google Scholar]
- Pagan R., Martín I., Llobera M., Vilaró S. Epithelial-mesenchymal transition of cultured rat neonatal hepatocytes is differentially regulated in response to epidermal growth factor and dimethyl sulfoxide. Hepatology. 1997 Mar;25(3):598–606. doi: 10.1002/hep.510250318. [DOI] [PubMed] [Google Scholar]
- Park C. M., Cha I. H., Chung K. B., Suh W. H., Lee C. H., Choi S. Y., Chae Y. S. Hepatocellular carcinoma in extrahepatic bile ducts. Acta Radiol. 1991 Jan;32(1):34–36. [PubMed] [Google Scholar]
- Potten C. S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 Dec;110(4):1001–1020. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
- Rao K. N., Shinozuka H., Kunz H. W., Gill T. J., 3rd Enhanced susceptibility to a chemical carcinogen in rats carrying MHC-linked genes influencing development (GRC). Int J Cancer. 1984 Jul 15;34(1):113–120. doi: 10.1002/ijc.2910340120. [DOI] [PubMed] [Google Scholar]
- Rao M. S., Dwivedi R. S., Yeldandi A. V., Subbarao V., Tan X. D., Usman M. I., Thangada S., Nemali M. R., Kumar S., Scarpelli D. G. Role of periductal and ductular epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage. A change in the differentiation commitment. Am J Pathol. 1989 May;134(5):1069–1086. [PMC free article] [PubMed] [Google Scholar]
- Ray M. B., Mendenhall C. L., French S. W., Gartside P. S. Bile duct changes in alcoholic liver disease. The Veterans Administration Cooperative Study Group. Liver. 1993 Feb;13(1):36–45. doi: 10.1111/j.1600-0676.1993.tb00603.x. [DOI] [PubMed] [Google Scholar]
- Rescan P. Y., Loréal O., Hassell J. R., Yamada Y., Guillouzo A., Clément B. Distribution and origin of the basement membrane component perlecan in rat liver and primary hepatocyte culture. Am J Pathol. 1993 Jan;142(1):199–208. [PMC free article] [PubMed] [Google Scholar]
- Rogler L. E. Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am J Pathol. 1997 Feb;150(2):591–602. [PMC free article] [PubMed] [Google Scholar]
- Rosen E. M., Nigam S. K., Goldberg I. D. Scatter factor and the c-met receptor: a paradigm for mesenchymal/epithelial interaction. J Cell Biol. 1994 Dec;127(6 Pt 2):1783–1787. doi: 10.1083/jcb.127.6.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roskams T., Campos R. V., Drucker D. J., Desmet V. J. Reactive human bile ductules express parathyroid hormone-related peptide. Histopathology. 1993 Jul;23(1):11–19. doi: 10.1111/j.1365-2559.1993.tb01178.x. [DOI] [PubMed] [Google Scholar]
- Roskams T., De Vos R., van den Oord J. J., Desmet V. Cells with neuroendocrine features in regenerating human liver. APMIS Suppl. 1991;23:32–39. [PubMed] [Google Scholar]
- Roskams T., Moshage H., Depla E., Willems M., Desmet V., Yap P. Parathyroid hormone-related peptide is expressed and rapidly inducible in human liver cell cultures that have a bile duct phenotype. J Hepatol. 1995 Aug;23(2):160–165. doi: 10.1016/0168-8278(95)80330-0. [DOI] [PubMed] [Google Scholar]
- Roskams T., Willems M., Campos R. V., Drucker D. J., Yap S. H., Desmet V. J. Parathyroid hormone-related peptide expression in primary and metastatic liver tumours. Histopathology. 1993 Dec;23(6):519–525. doi: 10.1111/j.1365-2559.1993.tb01237.x. [DOI] [PubMed] [Google Scholar]
- Sarraf C., Lalani E. N., Golding M., Anilkumar T. V., Poulsom R., Alison M. Cell behavior in the acetylaminofluorene-treated regenerating rat liver. Light and electron microscopic observations. Am J Pathol. 1994 Nov;145(5):1114–1126. [PMC free article] [PubMed] [Google Scholar]
- Schirmacher P., Geerts A., Pietrangelo A., Dienes H. P., Rogler C. E. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology. 1992 Jan;15(1):5–11. doi: 10.1002/hep.1840150103. [DOI] [PubMed] [Google Scholar]
- Schmitt-Gräff A., Krüger S., Bochard F., Gabbiani G., Denk H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol. 1991 May;138(5):1233–1242. [PMC free article] [PubMed] [Google Scholar]
- Sell S. Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect. 1993 Dec;101 (Suppl 5):15–26. doi: 10.1289/ehp.93101s515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sell S. Comparison of oval cells induced in rat liver by feeding N-2-fluorenylacetamide in a choline-devoid diet and bile duct cells induced by feeding 4,4'-diaminodiphenylmethane. Cancer Res. 1983 Apr;43(4):1761–1767. [PubMed] [Google Scholar]
- Sell S., Dunsford H. A. Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am J Pathol. 1989 Jun;134(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
- Sell S. Heterogeneity of alpha-fetoprotein(AFP) and albumin containing cells in normal and pathological permissive states for AFP production: AFP containing cells induced in adult rats recapitulate the appearance of AFP containing hepatocytes in fetal rats. Oncodev Biol Med. 1980;1(2):93–105. [PubMed] [Google Scholar]
- Sell S. Is there a liver stem cell? Cancer Res. 1990 Jul 1;50(13):3811–3815. [PubMed] [Google Scholar]
- Sell S., Leffert H. L., Shinozuka H., Lombardi B., Gochman N. Rapid development of large numbers of alpha-fetoprotein-containing "oval" cells in the liver of rats fed N-2-fluorenylacetamide in a choline-devoid diet. Gan. 1981 Aug;72(4):479–487. [PubMed] [Google Scholar]
- Sell S. Liver stem cells. Mod Pathol. 1994 Jan;7(1):105–112. [PubMed] [Google Scholar]
- Sell S., Pierce G. B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest. 1994 Jan;70(1):6–22. [PubMed] [Google Scholar]
- Sell S., Salman J. Light- and electron-microscopic autoradiographic analysis of proliferating cells during the early stages of chemical hepatocarcinogenesis in the rat induced by feeding N-2-fluorenylacetamide in a choline-deficient diet. Am J Pathol. 1984 Feb;114(2):287–300. [PMC free article] [PubMed] [Google Scholar]
- Sell S. The role of determined stem-cells in the cellular lineage of hepatocellular carcinoma. Int J Dev Biol. 1993 Mar;37(1):189–201. [PubMed] [Google Scholar]
- Shah K. D., Gerber M. A. Development of intrahepatic bile ducts in humans. Possible role of laminin. Arch Pathol Lab Med. 1990 Jun;114(6):597–600. [PubMed] [Google Scholar]
- Shinagawa T., Tadokoro M., Maeyama S., Maeda C., Yamaguchi S., Morohoshi T., Ishikawa E. Alpha fetoprotein-producing acinar cell carcinoma of the pancreas showing multiple lines of differentiation. Virchows Arch. 1995;426(4):419–423. doi: 10.1007/BF00191352. [DOI] [PubMed] [Google Scholar]
- Shiojiri N., Lemire J. M., Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 1991 May 15;51(10):2611–2620. [PubMed] [Google Scholar]
- Sirica A. E., Gainey T. W., Mumaw V. R. Ductular hepatocytes. Evidence for a bile ductular cell origin in furan-treated rats. Am J Pathol. 1994 Aug;145(2):375–383. [PMC free article] [PubMed] [Google Scholar]
- Sirica A. E., Mathis G. A., Sano N., Elmore L. W. Isolation, culture, and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology. 1990;58(1):44–64. doi: 10.1159/000163564. [DOI] [PubMed] [Google Scholar]
- Slack J. M. Developmental biology of the pancreas. Development. 1995 Jun;121(6):1569–1580. doi: 10.1242/dev.121.6.1569. [DOI] [PubMed] [Google Scholar]
- Smith P. G., Tee L. B., Yeoh G. C. Appearance of oval cells in the liver of rats after long-term exposure to ethanol. Hepatology. 1996 Jan;23(1):145–154. doi: 10.1002/hep.510230120. [DOI] [PubMed] [Google Scholar]
- Stamatoglou S. C., Hughes R. C. Cell adhesion molecules in liver function and pattern formation. FASEB J. 1994 Apr 1;8(6):420–427. doi: 10.1096/fasebj.8.6.8168692. [DOI] [PubMed] [Google Scholar]
- Steinberg P., Steinbrecher R., Radaeva S., Schirmacher P., Dienes H. P., Oesch F., Bannasch P. Oval cell lines OC/CDE 6 and OC/CDE 22 give rise to cholangio-cellular and undifferentiated carcinomas after transformation. Lab Invest. 1994 Nov;71(5):700–709. [PubMed] [Google Scholar]
- Stoker M., Perryman M. An epithelial scatter factor released by embryo fibroblasts. J Cell Sci. 1985 Aug;77:209–223. doi: 10.1242/jcs.77.1.209. [DOI] [PubMed] [Google Scholar]
- Strain A. J., Ismail T., Tsubouchi H., Arakaki N., Hishida T., Kitamura N., Daikuhara Y., McMaster P. Native and recombinant human hepatocyte growth factors are highly potent promoters of DNA synthesis in both human and rat hepatocytes. J Clin Invest. 1991 May;87(5):1853–1857. doi: 10.1172/JCI115207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strain A. J., Wallace L., Joplin R., Daikuhara Y., Ishii T., Kelly D. A., Neuberger J. M. Characterization of biliary epithelial cells isolated from needle biopsies of human liver in the presence of hepatocyte growth factor. Am J Pathol. 1995 Feb;146(2):537–545. [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Ishizuka H., Kaneda H., Taniguchi N. gamma-Glutamyl transpeptidase in rat liver during 3'-Me-DAB hepatocarcinogenesis: immunohistochemical and enzyme histochemical study. J Histochem Cytochem. 1987 Jan;35(1):3–7. doi: 10.1177/35.1.2878949. [DOI] [PubMed] [Google Scholar]
- Taniguchi H., Toyoshima T., Fukao K., Nakauchi H. Presence of hematopoietic stem cells in the adult liver. Nat Med. 1996 Feb;2(2):198–203. doi: 10.1038/nm0296-198. [DOI] [PubMed] [Google Scholar]
- Tarsetti F., Lenzi R., Salvi R., Schuler E., Rijhsinghani K., Lenzen R., Tavoloni N. Liver carcinogenesis associated with feeding of ethionine in a choline-free diet: evidence against a role of oval cells in the emergence of hepatocellular carcinoma. Hepatology. 1993 Sep;18(3):596–603. [PubMed] [Google Scholar]
- Tatematsu M., Kaku T., Medline A., Farber E. Intestinal metaplasia as a common option of oval cells in relation to cholangiofibrosis in liver of rats exposed to 2-acetylaminofluorene. Lab Invest. 1985 Apr;52(4):354–362. [PubMed] [Google Scholar]
- Tateno C., Yoshizato K. Long-term cultivation of adult rat hepatocytes that undergo multiple cell divisions and express normal parenchymal phenotypes. Am J Pathol. 1996 Feb;148(2):383–392. [PMC free article] [PubMed] [Google Scholar]
- Tee L. B., Kirilak Y., Huang W. H., Morgan R. H., Yeoh G. C. Differentiation of oval cells into duct-like cells in preneoplastic liver of rats placed on a choline-deficient diet supplemented with ethionine. Carcinogenesis. 1994 Dec;15(12):2747–2756. doi: 10.1093/carcin/15.12.2747. [DOI] [PubMed] [Google Scholar]
- Terada T., Nakanuma Y. Development of human intrahepatic peribiliary glands. Histological, keratin immunohistochemical, and mucus histochemical analyses. Lab Invest. 1993 Mar;68(3):261–269. [PubMed] [Google Scholar]
- Terada T., Okada Y., Nakanuma Y. Expression of matrix proteinases during human intrahepatic bile duct development. A possible role in biliary cell migration. Am J Pathol. 1995 Nov;147(5):1207–1213. [PMC free article] [PubMed] [Google Scholar]
- Thorgeirsson S. S., Evarts R. P., Bisgaard H. C., Fujio K., Hu Z. Hepatic stem cell compartment: activation and lineage commitment. Proc Soc Exp Biol Med. 1993 Dec;204(3):253–260. doi: 10.3181/00379727-204-43661. [DOI] [PubMed] [Google Scholar]
- Tsao M. S., Grisham J. W. Hepatocarcinomas, cholangiocarcinomas, and hepatoblastomas produced by chemically transformed cultured rat liver epithelial cells. A light- and electron-microscopic analysis. Am J Pathol. 1987 Apr;127(1):168–181. [PMC free article] [PubMed] [Google Scholar]
- Tsao M. S., Grisham J. W., Nelson K. G., Smith J. D. Phenotypic and karyotypic changes induced in cultured rat hepatic epithelial cells that express the "oval" cell phenotype by exposure to N-methyl-N'-nitro-N-nitrosoguanidine. Am J Pathol. 1985 Feb;118(2):306–315. [PMC free article] [PubMed] [Google Scholar]
- Tsao M. S., Smith J. D., Nelson K. G., Grisham J. W. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of 'oval' cells. Exp Cell Res. 1984 Sep;154(1):38–52. doi: 10.1016/0014-4827(84)90666-9. [DOI] [PubMed] [Google Scholar]
- Tyner A. L., Godbout R., Compton R. S., Tilghman S. M. The ontogeny of alpha-fetoprotein gene expression in the mouse gastrointestinal tract. J Cell Biol. 1990 Apr;110(4):915–927. doi: 10.1083/jcb.110.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchida T., Peters R. L. The nature and origin of proliferated bile ductules in alcoholic liver disease. Am J Clin Pathol. 1983 Mar;79(3):326–333. doi: 10.1093/ajcp/79.3.326. [DOI] [PubMed] [Google Scholar]
- Van Eyken P., Sciot R., Callea F., Van der Steen K., Moerman P., Desmet V. J. The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology. 1988 Nov-Dec;8(6):1586–1595. doi: 10.1002/hep.1840080619. [DOI] [PubMed] [Google Scholar]
- Van Eyken P., Sciot R., Desmet V. J. A cytokeratin immunohistochemical study of alcoholic liver disease: evidence that hepatocytes can express 'bile duct-type' cytokeratins. Histopathology. 1988 Dec;13(6):605–617. doi: 10.1111/j.1365-2559.1988.tb02092.x. [DOI] [PubMed] [Google Scholar]
- Van Eyken P., Sciot R., Desmet V. J. A cytokeratin immunohistochemical study of cholestatic liver disease: evidence that hepatocytes can express 'bile duct-type' cytokeratins. Histopathology. 1989 Aug;15(2):125–135. doi: 10.1111/j.1365-2559.1989.tb03060.x. [DOI] [PubMed] [Google Scholar]
- Vandersteenhoven A. M., Burchette J., Michalopoulos G. Characterization of ductular hepatocytes in end-stage cirrhosis. Arch Pathol Lab Med. 1990 Apr;114(4):403–406. [PubMed] [Google Scholar]
- WILSON J. W., LEDUC E. H. Role of cholangioles in restoration of the liver of the mouse after dietary injury. J Pathol Bacteriol. 1958 Oct;76(2):441–449. doi: 10.1002/path.1700760213. [DOI] [PubMed] [Google Scholar]
- Wu H., Wade M., Krall L., Grisham J., Xiong Y., Van Dyke T. Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev. 1996 Feb 1;10(3):245–260. doi: 10.1101/gad.10.3.245. [DOI] [PubMed] [Google Scholar]
- Yang L., Faris R. A., Hixson D. C. Phenotypic heterogeneity within clonogenic ductal cell populations isolated from normal adult rat liver. Proc Soc Exp Biol Med. 1993 Dec;204(3):280–288. doi: 10.3181/00379727-204-43664. [DOI] [PubMed] [Google Scholar]
- Yasui O., Miura N., Terada K., Kawarada Y., Koyama K., Sugiyama T. Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytes in vivo in the rat liver. Hepatology. 1997 Feb;25(2):329–334. doi: 10.1053/jhep.1997.v25.pm0009021943. [DOI] [PubMed] [Google Scholar]
- Yaswen P., Goyette M., Shank P. R., Fausto N. Expression of c-Ki-ras, c-Ha-ras, and c-myc in specific cell types during hepatocarcinogenesis. Mol Cell Biol. 1985 Apr;5(4):780–786. doi: 10.1128/mcb.5.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yavorkovsky L., Lai E., Ilic Z., Sell S. Participation of small intraportal stem cells in the restitutive response of the liver to periportal necrosis induced by allyl alcohol. Hepatology. 1995 Jun;21(6):1702–1712. [PubMed] [Google Scholar]
- Zajicek G., Oren R., Weinreb M., Jr The streaming liver. Liver. 1985 Dec;5(6):293–300. doi: 10.1111/j.1600-0676.1985.tb00252.x. [DOI] [PubMed] [Google Scholar]
- Zalatnai A., Schally A. V. Hepatic lesions in Syrian golden hamsters with pancreatic carcinoma induced by N-nitrosobis(2-oxopropyl)amine (BOP). Acta Morphol Hung. 1990;38(2):119–130. [PubMed] [Google Scholar]