Abstract
When human observers view dynamic random noise, such as television 'snow', through a curved or annular aperture, they experience a compelling illusion that the noise is moving smoothly and coherently around the curve (the 'omega effect'). In several series of experiments, we have investigated the conditions under which this effect occurs and the possible mechanisms that might cause it. We contrast the omega effect with 'phi motion', seen when an object suddenly changes position. Our conclusions are that the visual scene is first segmented into objects before a coherent velocity is assigned to the texture on each object's surface. The omega effect arises because there are motion mechanisms that deal specifically with object rotation and these interact with pattern mechanisms sensitive to curvature.
Full Text
The Full Text of this article is available as a PDF (387.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blake R., O'Shea R. P., Mueller T. J. Spatial zones of binocular rivalry in central and peripheral vision. Vis Neurosci. 1992 May;8(5):469–478. doi: 10.1017/s0952523800004971. [DOI] [PubMed] [Google Scholar]
- Bravo M. J., Watamaniuk S. N. Evidence for two speed signals: a coarse local signal for segregation and a precise global signal for discrimination. Vision Res. 1995 Jun;35(12):1691–1697. doi: 10.1016/0042-6989(94)00266-o. [DOI] [PubMed] [Google Scholar]
- Dobbins A., Zucker S. W., Cynader M. S. Endstopping and curvature. Vision Res. 1989;29(10):1371–1387. doi: 10.1016/0042-6989(89)90193-4. [DOI] [PubMed] [Google Scholar]
- Gallant J. L., Braun J., Van Essen D. C. Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science. 1993 Jan 1;259(5091):100–103. doi: 10.1126/science.8418487. [DOI] [PubMed] [Google Scholar]
- Georgeson M. A. The perceived spatial frequency, contrast, and orientation of illusory gratings. Perception. 1980;9(6):695–712. doi: 10.1068/p090695. [DOI] [PubMed] [Google Scholar]
- Gerrits H. J., Vendrik A. J. Simultaneous contrast, filling-in process and information processing in man's visual system. Exp Brain Res. 1970 Nov 26;11(4):411–430. doi: 10.1007/BF00237914. [DOI] [PubMed] [Google Scholar]
- Grossberg S., Mingolla E. Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept Psychophys. 1985 Aug;38(2):141–171. doi: 10.3758/bf03198851. [DOI] [PubMed] [Google Scholar]
- Kramer D., Fahle M. A simple mechanism for detecting low curvatures. Vision Res. 1996 May;36(10):1411–1419. doi: 10.1016/0042-6989(95)00340-1. [DOI] [PubMed] [Google Scholar]
- Lee T. S. A Bayesian framework for understanding texture segmentation in the primary visual cortex. Vision Res. 1995 Sep;35(18):2643–2657. doi: 10.1016/0042-6989(95)00032-u. [DOI] [PubMed] [Google Scholar]
- Livingstone M. S., Hubel D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987 Nov;7(11):3416–3468. doi: 10.1523/JNEUROSCI.07-11-03416.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MACKAY D. M. VISUAL NOISE AS A TOOL OF RESEARCH. J Gen Psychol. 1965 Apr;72:181–197. doi: 10.1080/00221309.1965.9710688. [DOI] [PubMed] [Google Scholar]
- Mingolla E., Todd J. T., Norman J. F. The perception of globally coherent motion. Vision Res. 1992 Jun;32(6):1015–1031. doi: 10.1016/0042-6989(92)90003-2. [DOI] [PubMed] [Google Scholar]
- Murakami I., Shimojo S. Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes. Vision Res. 1993 Oct;33(15):2091–2107. doi: 10.1016/0042-6989(93)90008-k. [DOI] [PubMed] [Google Scholar]
- Noss R. S. Line intensity affects perceived shape. Vision Res. 1994 Feb;34(4):497–510. doi: 10.1016/0042-6989(94)90163-5. [DOI] [PubMed] [Google Scholar]
- Paradiso M. A., Nakayama K. Brightness perception and filling-in. Vision Res. 1991;31(7-8):1221–1236. doi: 10.1016/0042-6989(91)90047-9. [DOI] [PubMed] [Google Scholar]
- Qian N., Andersen R. A., Adelson E. H. Transparent motion perception as detection of unbalanced motion signals. III. Modeling. J Neurosci. 1994 Dec;14(12):7381–7392. doi: 10.1523/JNEUROSCI.14-12-07381.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramachandran V. S. Apparent motion of subjective surfaces. Perception. 1985;14(2):127–134. doi: 10.1068/p140127. [DOI] [PubMed] [Google Scholar]
- Rose D., Lowe I. Dynamics of adaptation to contrast. Perception. 1982;11(5):505–528. doi: 10.1068/p110505. [DOI] [PubMed] [Google Scholar]
- Sclar G., Maunsell J. H., Lennie P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 1990;30(1):1–10. doi: 10.1016/0042-6989(90)90123-3. [DOI] [PubMed] [Google Scholar]
- Shapley R., Kaplan E., Soodak R. Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature. 1981 Aug 6;292(5823):543–545. doi: 10.1038/292543a0. [DOI] [PubMed] [Google Scholar]
- Todd J. T., Norman J. F. The effects of spatiotemporal integration on maximum displacement thresholds for the detection of coherent motion. Vision Res. 1995 Aug;35(16):2287–2302. doi: 10.1016/0042-6989(94)00312-a. [DOI] [PubMed] [Google Scholar]
- Tootell R. B., Reppas J. B., Kwong K. K., Malach R., Born R. T., Brady T. J., Rosen B. R., Belliveau J. W. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci. 1995 Apr;15(4):3215–3230. doi: 10.1523/JNEUROSCI.15-04-03215.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Versavel M., Orban G. A., Lagae L. Responses of visual cortical neurons to curved stimuli and chevrons. Vision Res. 1990;30(2):235–248. doi: 10.1016/0042-6989(90)90039-n. [DOI] [PubMed] [Google Scholar]
- WALLS G. L. The filling-in process. Am J Optom Arch Am Acad Optom. 1954 Jul;31(7):329–341. doi: 10.1097/00006324-195407000-00001. [DOI] [PubMed] [Google Scholar]
- Watamaniuk S. N., Duchon A. The human visual system averages speed information. Vision Res. 1992 May;32(5):931–941. doi: 10.1016/0042-6989(92)90036-i. [DOI] [PubMed] [Google Scholar]
- Williams D. W., Sekuler R. Coherent global motion percepts from stochastic local motions. Vision Res. 1984;24(1):55–62. doi: 10.1016/0042-6989(84)90144-5. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Richards W. A. Mechanisms of contour curvature discrimination. J Opt Soc Am A. 1989 Jan;6(1):106–115. doi: 10.1364/josaa.6.000106. [DOI] [PubMed] [Google Scholar]
- Wolfe J. M., Yee A., Friedman-Hill S. R. Curvature is a basic feature for visual search tasks. Perception. 1992;21(4):465–480. doi: 10.1068/p210465. [DOI] [PubMed] [Google Scholar]
- Yang Y., Rose D., Blake R. On the variety of percepts associated with dichoptic viewing of dissimilar monocular stimuli. Perception. 1992;21(1):47–62. doi: 10.1068/p210047. [DOI] [PubMed] [Google Scholar]
- Zeki S., Watson J. D., Frackowiak R. S. Going beyond the information given: the relation of illusory visual motion to brain activity. Proc Biol Sci. 1993 Jun 22;252(1335):215–222. doi: 10.1098/rspb.1993.0068. [DOI] [PubMed] [Google Scholar]
- Zetzsche C., Barth E. Fundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Res. 1990;30(7):1111–1117. doi: 10.1016/0042-6989(90)90120-a. [DOI] [PubMed] [Google Scholar]
- Zhang J., Yeh S. L., De Valois K. K. Motion contrast and motion integration. Vision Res. 1993 Dec;33(18):2721–2732. doi: 10.1016/0042-6989(93)90231-k. [DOI] [PubMed] [Google Scholar]
