Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Jul 29;353(1372):1187–1198. doi: 10.1098/rstb.1998.0275

Sensory receptors in monotremes.

U Proske 1, J E Gregory 1, A Iggo 1
PMCID: PMC1692308  PMID: 9720114

Abstract

This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence of weak electric fields in water. Perhaps the electric sense is used to detect moving prey in moist soil.

Full Text

The Full Text of this article is available as a PDF (576.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres K. H., von Düring M. Comparative anatomy of vertebrate electroreceptors. Prog Brain Res. 1988;74:113–131. doi: 10.1016/s0079-6123(08)63006-x. [DOI] [PubMed] [Google Scholar]
  2. Andres K. H., von Düring M., Iggo A., Proske U. The anatomy and fine structure of the echidna Tachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors. Anat Embryol (Berl) 1991;184(4):371–393. doi: 10.1007/BF00957899. [DOI] [PubMed] [Google Scholar]
  3. Bohringer R. C., Rowe M. J. The organization of the sensory and motor areas of cerebral cortex in the platypus (Ornithorhynchus anatinus). J Comp Neurol. 1977 Jul 1;174(1):1–14. doi: 10.1002/cne.901740102. [DOI] [PubMed] [Google Scholar]
  4. Catania K. C. A comparison of the Eimer's organs of three North American moles: the hairy-tailed mole (Parascalops breweri), the star-nosed mole (Condylura cristata), and the eastern mole (Scalopus aquaticus). J Comp Neurol. 1995 Mar 27;354(1):150–160. doi: 10.1002/cne.903540110. [DOI] [PubMed] [Google Scholar]
  5. Catania K. C., Kaas J. H. Organization of the somatosensory cortex of the star-nosed mole. J Comp Neurol. 1995 Jan 23;351(4):549–567. doi: 10.1002/cne.903510406. [DOI] [PubMed] [Google Scholar]
  6. Catania K. C. Structure and innervation of the sensory organs on the snout of the star-nosed mole. J Comp Neurol. 1995 Jan 23;351(4):536–548. doi: 10.1002/cne.903510405. [DOI] [PubMed] [Google Scholar]
  7. Chambers M. R., Andres K. H., von Duering M., Iggo A. The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q J Exp Physiol Cogn Med Sci. 1972 Oct;57(4):417–445. doi: 10.1113/expphysiol.1972.sp002177. [DOI] [PubMed] [Google Scholar]
  8. Gregory J. E., Iggo A., McIntyre A. K., Proske U. Electroreceptors in the platypus. 1987 Mar 26-Apr 1Nature. 326(6111):386–387. doi: 10.1038/326386a0. [DOI] [PubMed] [Google Scholar]
  9. Gregory J. E., Iggo A., McIntyre A. K., Proske U. Receptors in the bill of the platypus. J Physiol. 1988 Jun;400:349–366. doi: 10.1113/jphysiol.1988.sp017124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gregory J. E., Iggo A., McIntyre A. K., Proske U. Responses of electroreceptors in the platypus bill to steady and alternating potentials. J Physiol. 1989 Jan;408:391–404. doi: 10.1113/jphysiol.1989.sp017465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gregory J. E., Iggo A., McIntyre A. K., Proske U. Responses of electroreceptors in the snout of the echidna. J Physiol. 1989 Jul;414:521–538. doi: 10.1113/jphysiol.1989.sp017701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gregory J. E., McIntyre A. K., Proske U. Vibration-evoked responses from lamellated corpuscles in the legs of kangaroos. Exp Brain Res. 1986;62(3):648–653. doi: 10.1007/BF00236045. [DOI] [PubMed] [Google Scholar]
  13. Iggo A., Gregory J. E., Proske U. Studies of mechanoreceptors in skin of the snout of the echidna Tachyglossus aculeatus. Somatosens Mot Res. 1996;13(2):129–138. doi: 10.3109/08990229609051400. [DOI] [PubMed] [Google Scholar]
  14. Iggo A., Gregory J. E., Proske U. The central projection of electrosensory information in the platypus. J Physiol. 1992 Feb;447:449–465. doi: 10.1113/jphysiol.1992.sp019011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iggo A., Muir A. R. The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol. 1969 Feb;200(3):763–796. doi: 10.1113/jphysiol.1969.sp008721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iggo A., Proske U., McIntyre A. K., Gregory J. E. Cutaneous electroreceptors in the platypus: a new mammalian receptor. Prog Brain Res. 1988;74:133–138. doi: 10.1016/s0079-6123(08)63007-1. [DOI] [PubMed] [Google Scholar]
  17. Krubitzer L., Manger P., Pettigrew J., Calford M. Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol. 1995 Jan 9;351(2):261–306. doi: 10.1002/cne.903510206. [DOI] [PubMed] [Google Scholar]
  18. LENDE R. A. REPRESENTATION IN THE CEREBRAL CORTEX OF A PRIMITIVE MAMMAL. SENSORIMOTOR, VISUAL, AND AUDITORY FIELDS IN THE ECHIDNA (TACHYGLOSSUS ACULEATUS). J Neurophysiol. 1964 Jan;27:37–48. doi: 10.1152/jn.1964.27.1.37. [DOI] [PubMed] [Google Scholar]
  19. Manger P. R., Hughes R. L. Ultrastructure and distribution of epidermal sensory receptors in the beak of the echidna, Tachyglossus aculeatus. Brain Behav Evol. 1992;40(6):287–296. doi: 10.1159/000113919. [DOI] [PubMed] [Google Scholar]
  20. Manger P. R., Pettigrew J. D., Keast J. R., Bauer A. Nerve terminals of mucous gland electroreceptors in the platypus (Ornithorhynchus anatinus). Proc Biol Sci. 1995 Apr 22;260(1357):13–19. doi: 10.1098/rspb.1995.0053. [DOI] [PubMed] [Google Scholar]
  21. Manger P. R., Pettigrew J. D. Ultrastructure, number, distribution and innervation of electroreceptors and mechanoreceptors in the bill skin of the platypus, Ornithorhynchus anatinus. Brain Behav Evol. 1996;48(1):27–54. doi: 10.1159/000113185. [DOI] [PubMed] [Google Scholar]
  22. doi: 10.1098/rspb.1997.0024. [DOI] [PMC free article] [Google Scholar]
  23. Scheich H., Langner G., Tidemann C., Coles R. B., Guppy A. Electroreception and electrolocation in platypus. 1986 Jan 30-Feb 5Nature. 319(6052):401–402. doi: 10.1038/319401a0. [DOI] [PubMed] [Google Scholar]
  24. Ulinski P. S. Thalamic projections to the somatosensory cortex of the echidna, Tachyglossus aculeatus. J Comp Neurol. 1984 Oct 20;229(2):153–170. doi: 10.1002/cne.902290203. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES