Abstract
Vision, audition and somatic sensation in the platypus are reviewed. Recent work on the eye and retinal ganglion cell layer of the platypus is presented that provides an estimate of visual acuity and suggests that platypus ancestors may have used vision, as well as the bill organ, for underwater predation. The combined electroreceptor and mechanoreceptor array in the bill is considered in detail, with special reference to the elaborate cortical structure, where inputs from these two sensory arrays are integrated in a manner that is astonishingly similar to the stripe-like ocular dominance array in primate visual of cortex, that integrates input from the two eyes. A new hypothesis, along with supporting data, is presented for this combined mechanoreceptive-electroreceptive complex in platypus cortex. Bill mechanoreceptors are shown to be capable of detecting mechanical waves travelling through the water from moving prey. These mechanical waves arrive after the electrical activity from the same prey, as a function of distance. Bimodal cortical neurones, sensitive to combined mechanical and electrical stimulation, with a delay, can thus signal directly the absolute distance of the prey. Combined with the directional information provided by signal processing of the thousands of receptors on the bill surface, the stripe-like cortical array enables the platypus to use two different sensory systems in its bill to achieve a complete, three-dimensional 'fix' on its underwater prey.
Full Text
The Full Text of this article is available as a PDF (307.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Catania K. C. Structure and innervation of the sensory organs on the snout of the star-nosed mole. J Comp Neurol. 1995 Jan 23;351(4):536–548. doi: 10.1002/cne.903510405. [DOI] [PubMed] [Google Scholar]
- Gale J. E., Ashmore J. F. An intrinsic frequency limit to the cochlear amplifier. Nature. 1997 Sep 4;389(6646):63–66. doi: 10.1038/37968. [DOI] [PubMed] [Google Scholar]
- Gates G. R., Saunders J. C., Bock G. R., Aitkin L. M., Elliott M. A. Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J Acoust Soc Am. 1974 Jul;56(1):152–156. doi: 10.1121/1.1903246. [DOI] [PubMed] [Google Scholar]
- Gregory J. E., Iggo A., McIntyre A. K., Proske U. Electroreceptors in the platypus. 1987 Mar 26-Apr 1Nature. 326(6111):386–387. doi: 10.1038/326386a0. [DOI] [PubMed] [Google Scholar]
- Gregory J. E., Iggo A., McIntyre A. K., Proske U. Responses of electroreceptors in the platypus bill to steady and alternating potentials. J Physiol. 1989 Jan;408:391–404. doi: 10.1113/jphysiol.1989.sp017465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krubitzer L., Manger P., Pettigrew J., Calford M. Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol. 1995 Jan 9;351(2):261–306. doi: 10.1002/cne.903510206. [DOI] [PubMed] [Google Scholar]
- Ladhams A., Pickles J. O. Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol. 1996 Mar 4;366(2):335–347. doi: 10.1002/(SICI)1096-9861(19960304)366:2<335::AID-CNE11>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- LeVay S., Voigt T. Ocular dominance and disparity coding in cat visual cortex. Vis Neurosci. 1988;1(4):395–414. doi: 10.1017/s0952523800004168. [DOI] [PubMed] [Google Scholar]
- LeVay S., Wiesel T. N., Hubel D. H. The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol. 1980 May 1;191(1):1–51. doi: 10.1002/cne.901910102. [DOI] [PubMed] [Google Scholar]
- Little P. Genome analysis. Nature. 1996 Aug 1;382(6590):408–408. doi: 10.1038/382408a0. [DOI] [PubMed] [Google Scholar]
- MONTAGNA W., ELLIS R. A. Sweat glands in the skin of Ornithorhynchus paradoxus. Anat Rec. 1960 Jul;137:271–277. doi: 10.1002/ar.1091370305. [DOI] [PubMed] [Google Scholar]
- Manger P. R., Hughes R. L. Ultrastructure and distribution of epidermal sensory receptors in the beak of the echidna, Tachyglossus aculeatus. Brain Behav Evol. 1992;40(6):287–296. doi: 10.1159/000113919. [DOI] [PubMed] [Google Scholar]
- Manger P. R., Pettigrew J. D. Ultrastructure, number, distribution and innervation of electroreceptors and mechanoreceptors in the bill skin of the platypus, Ornithorhynchus anatinus. Brain Behav Evol. 1996;48(1):27–54. doi: 10.1159/000113185. [DOI] [PubMed] [Google Scholar]
- Mogdans J., Bleckmann H., Menger N. Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol. 1997;50(5):261–283. doi: 10.1159/000113341. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1997.0024. [DOI] [PMC free article] [Google Scholar]
- Pettigrew J. D., Jamieson B. G., Robson S. K., Hall L. S., McAnally K. I., Cooper H. M. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Philos Trans R Soc Lond B Biol Sci. 1989 Nov 30;325(1229):489–559. doi: 10.1098/rstb.1989.0102. [DOI] [PubMed] [Google Scholar]
- Scheich H., Langner G., Tidemann C., Coles R. B., Guppy A. Electroreception and electrolocation in platypus. 1986 Jan 30-Feb 5Nature. 319(6052):401–402. doi: 10.1038/319401a0. [DOI] [PubMed] [Google Scholar]
- Sivak J. G. Accommodation in vertebrates: a contemporary survey. Curr Top Eye Res. 1980;3:281–330. [PubMed] [Google Scholar]
- Vater M., Lenoir M. Ultrastructure of the horseshoe bat's organ of Corti. I. Scanning electron microscopy. J Comp Neurol. 1992 Apr 22;318(4):367–379. doi: 10.1002/cne.903180403. [DOI] [PubMed] [Google Scholar]