Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Aug 29;353(1373):1245–1255. doi: 10.1098/rstb.1998.0280

Visual attention mediated by biased competition in extrastriate visual cortex.

R Desimone 1
PMCID: PMC1692333  PMID: 9770219

Abstract

According to conventional neurobiological accounts of visual attention, attention serves to enhance extrastriate neuronal responses to a stimulus at one spatial location in the visual field. However, recent results from recordings in extrastriate cortex of monkeys suggest that any enhancing effect of attention is best understood in the context of competitive interactions among neurons representing all of the stimuli present in the visual field. These interactions can be biased in favour of behaviourally relevant stimuli as a result of many different processes, both spatial and non-spatial, and both bottom-up and top-down. The resolution of this competition results in the suppression of the neuronal representations of behaviourally irrelevant stimuli in extrastriate cortex. A main source of top-down influence may derive from neuronal systems underlying working memory.

Full Text

The Full Text of this article is available as a PDF (340.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baizer J. S., Ungerleider L. G., Desimone R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci. 1991 Jan;11(1):168–190. doi: 10.1523/JNEUROSCI.11-01-00168.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbas H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol. 1988 Oct 15;276(3):313–342. doi: 10.1002/cne.902760302. [DOI] [PubMed] [Google Scholar]
  3. Barbas H., Pandya D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1989 Aug 15;286(3):353–375. doi: 10.1002/cne.902860306. [DOI] [PubMed] [Google Scholar]
  4. Basso M. A., Wurtz R. H. Modulation of neuronal activity by target uncertainty. Nature. 1997 Sep 4;389(6646):66–69. doi: 10.1038/37975. [DOI] [PubMed] [Google Scholar]
  5. Bauer R. H., Fuster J. M. Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol. 1976 Mar;90(3):293–302. doi: 10.1037/h0087996. [DOI] [PubMed] [Google Scholar]
  6. Bundesen C. A theory of visual attention. Psychol Rev. 1990 Oct;97(4):523–547. doi: 10.1037/0033-295x.97.4.523. [DOI] [PubMed] [Google Scholar]
  7. Bushnell M. C., Goldberg M. E., Robinson D. L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol. 1981 Oct;46(4):755–772. doi: 10.1152/jn.1981.46.4.755. [DOI] [PubMed] [Google Scholar]
  8. Chelazzi L., Miller E. K., Duncan J., Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993 May 27;363(6427):345–347. doi: 10.1038/363345a0. [DOI] [PubMed] [Google Scholar]
  9. Colby C. L., Duhamel J. R., Goldberg M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol. 1996 Nov;76(5):2841–2852. doi: 10.1152/jn.1996.76.5.2841. [DOI] [PubMed] [Google Scholar]
  10. Colby C. L. The neuroanatomy and neurophysiology of attention. J Child Neurol. 1991;6 (Suppl):S90–118. doi: 10.1177/0883073891006001s11. [DOI] [PubMed] [Google Scholar]
  11. Connor C. E., Gallant J. L., Preddie D. C., Van Essen D. C. Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol. 1996 Mar;75(3):1306–1308. doi: 10.1152/jn.1996.75.3.1306. [DOI] [PubMed] [Google Scholar]
  12. Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., Petersen S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci. 1991 Aug;11(8):2383–2402. doi: 10.1523/JNEUROSCI.11-08-02383.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Courtney S. M., Ungerleider L. G., Keil K., Haxby J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature. 1997 Apr 10;386(6625):608–611. doi: 10.1038/386608a0. [DOI] [PubMed] [Google Scholar]
  14. Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
  15. Desimone R., Fleming J., Gross C. G. Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res. 1980 Feb 17;184(1):41–55. doi: 10.1016/0006-8993(80)90586-7. [DOI] [PubMed] [Google Scholar]
  16. Desimone R., Gross C. G. Visual areas in the temporal cortex of the macaque. Brain Res. 1979 Dec 14;178(2-3):363–380. doi: 10.1016/0006-8993(79)90699-1. [DOI] [PubMed] [Google Scholar]
  17. Desimone R., Schein S. J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J Neurophysiol. 1987 Mar;57(3):835–868. doi: 10.1152/jn.1987.57.3.835. [DOI] [PubMed] [Google Scholar]
  18. Desimone R., Wessinger M., Thomas L., Schneider W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb Symp Quant Biol. 1990;55:963–971. doi: 10.1101/sqb.1990.055.01.090. [DOI] [PubMed] [Google Scholar]
  19. Duncan J., Humphreys G. W. Visual search and stimulus similarity. Psychol Rev. 1989 Jul;96(3):433–458. doi: 10.1037/0033-295x.96.3.433. [DOI] [PubMed] [Google Scholar]
  20. Essen D. C., Zeki S. M. The topographic organization of rhesus monkey prestriate cortex. J Physiol. 1978 Apr;277:193–226. doi: 10.1113/jphysiol.1978.sp012269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Funahashi S., Bruce C. J., Goldman-Rakic P. S. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas". J Neurosci. 1993 Apr;13(4):1479–1497. doi: 10.1523/JNEUROSCI.13-04-01479.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Funahashi S., Bruce C. J., Goldman-Rakic P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol. 1989 Feb;61(2):331–349. doi: 10.1152/jn.1989.61.2.331. [DOI] [PubMed] [Google Scholar]
  23. Funahashi S., Chafee M. V., Goldman-Rakic P. S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature. 1993 Oct 21;365(6448):753–756. doi: 10.1038/365753a0. [DOI] [PubMed] [Google Scholar]
  24. Fuster J. M., Bauer R. H., Jervey J. P. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 1985 Mar 25;330(2):299–307. doi: 10.1016/0006-8993(85)90689-4. [DOI] [PubMed] [Google Scholar]
  25. Fuster J. M., Jervey J. P. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science. 1981 May 22;212(4497):952–955. doi: 10.1126/science.7233192. [DOI] [PubMed] [Google Scholar]
  26. Fuster J. M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol. 1973 Jan;36(1):61–78. doi: 10.1152/jn.1973.36.1.61. [DOI] [PubMed] [Google Scholar]
  27. Gallant J. L., Connor C. E., Rakshit S., Lewis J. W., Van Essen D. C. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J Neurophysiol. 1996 Oct;76(4):2718–2739. doi: 10.1152/jn.1996.76.4.2718. [DOI] [PubMed] [Google Scholar]
  28. Gattass R., Sousa A. P., Gross C. G. Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci. 1988 Jun;8(6):1831–1845. doi: 10.1523/JNEUROSCI.08-06-01831.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Groh J. M., Seidemann E., Newsome W. T. Neurophysiology: neural fingerprints of visual attention. Curr Biol. 1996 Nov 1;6(11):1406–1409. doi: 10.1016/s0960-9822(96)00743-9. [DOI] [PubMed] [Google Scholar]
  30. Grossberg S., Mingolla E., Ross W. D. A neural theory of attentive visual search: interactions of boundary, surface, spatial, and object representations. Psychol Rev. 1994 Jul;101(3):470–489. doi: 10.1037/0033-295x.101.3.470. [DOI] [PubMed] [Google Scholar]
  31. Haenny P. E., Maunsell J. H., Schiller P. H. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp Brain Res. 1988;69(2):245–259. doi: 10.1007/BF00247570. [DOI] [PubMed] [Google Scholar]
  32. Luck S. J., Chelazzi L., Hillyard S. A., Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997 Jan;77(1):24–42. doi: 10.1152/jn.1997.77.1.24. [DOI] [PubMed] [Google Scholar]
  33. Lynch J. C., Mountcastle V. B., Talbot W. H., Yin T. C. Parietal lobe mechanisms for directed visual attention. J Neurophysiol. 1977 Mar;40(2):362–389. doi: 10.1152/jn.1977.40.2.362. [DOI] [PubMed] [Google Scholar]
  34. MISHKIN M. Effects of small frontal lesions on delayed alternation in monkeys. J Neurophysiol. 1957 Nov;20(6):615–622. doi: 10.1152/jn.1957.20.6.615. [DOI] [PubMed] [Google Scholar]
  35. Maunsell J. H., Sclar G., Nealey T. A., DePriest D. D. Extraretinal representations in area V4 in the macaque monkey. Vis Neurosci. 1991 Dec;7(6):561–573. doi: 10.1017/s095252380001035x. [DOI] [PubMed] [Google Scholar]
  36. Miller E. K., Desimone R. Parallel neuronal mechanisms for short-term memory. Science. 1994 Jan 28;263(5146):520–522. doi: 10.1126/science.8290960. [DOI] [PubMed] [Google Scholar]
  37. Miller E. K., Erickson C. A., Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci. 1996 Aug 15;16(16):5154–5167. doi: 10.1523/JNEUROSCI.16-16-05154.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Miller E. K., Gochin P. M., Gross C. G. Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Res. 1993 Jul 9;616(1-2):25–29. doi: 10.1016/0006-8993(93)90187-r. [DOI] [PubMed] [Google Scholar]
  39. Miller E. K., Li L., Desimone R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci. 1993 Apr;13(4):1460–1478. doi: 10.1523/JNEUROSCI.13-04-01460.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mishkin M., Manning F. J. Non-spatial memory after selective prefrontal lesions in monkeys. Brain Res. 1978 Mar 24;143(2):313–323. doi: 10.1016/0006-8993(78)90571-1. [DOI] [PubMed] [Google Scholar]
  41. Miyashita Y., Chang H. S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature. 1988 Jan 7;331(6151):68–70. doi: 10.1038/331068a0. [DOI] [PubMed] [Google Scholar]
  42. Moran J., Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985 Aug 23;229(4715):782–784. doi: 10.1126/science.4023713. [DOI] [PubMed] [Google Scholar]
  43. Motter B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J Neurophysiol. 1993 Sep;70(3):909–919. doi: 10.1152/jn.1993.70.3.909. [DOI] [PubMed] [Google Scholar]
  44. Motter B. C. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J Neurosci. 1994 Apr;14(4):2178–2189. doi: 10.1523/JNEUROSCI.14-04-02178.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Niki H., Watanabe M. Prefrontal unit activity and delayed response: relation to cue location versus direction of response. Brain Res. 1976 Mar 19;105(1):79–88. doi: 10.1016/0006-8993(76)90924-0. [DOI] [PubMed] [Google Scholar]
  46. Rao S. C., Rainer G., Miller E. K. Integration of what and where in the primate prefrontal cortex. Science. 1997 May 2;276(5313):821–824. doi: 10.1126/science.276.5313.821. [DOI] [PubMed] [Google Scholar]
  47. Riches I. P., Wilson F. A., Brown M. W. The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J Neurosci. 1991 Jun;11(6):1763–1779. doi: 10.1523/JNEUROSCI.11-06-01763.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Richmond B. J., Wurtz R. H., Sato T. Visual responses of inferior temporal neurons in awake rhesus monkey. J Neurophysiol. 1983 Dec;50(6):1415–1432. doi: 10.1152/jn.1983.50.6.1415. [DOI] [PubMed] [Google Scholar]
  49. Robinson D. L., Bowman E. M., Kertzman C. Covert orienting of attention in macaques. II. Contributions of parietal cortex. J Neurophysiol. 1995 Aug;74(2):698–712. doi: 10.1152/jn.1995.74.2.698. [DOI] [PubMed] [Google Scholar]
  50. Robinson D. L., Goldberg M. E., Stanton G. B. Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J Neurophysiol. 1978 Jul;41(4):910–932. doi: 10.1152/jn.1978.41.4.910. [DOI] [PubMed] [Google Scholar]
  51. Rolls E. T., Tovee M. J. The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field. Exp Brain Res. 1995;103(3):409–420. doi: 10.1007/BF00241500. [DOI] [PubMed] [Google Scholar]
  52. Sato T. Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque. J Neurophysiol. 1988 Jul;60(1):344–364. doi: 10.1152/jn.1988.60.1.344. [DOI] [PubMed] [Google Scholar]
  53. Sato T. Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques. Exp Brain Res. 1989;77(1):23–30. doi: 10.1007/BF00250563. [DOI] [PubMed] [Google Scholar]
  54. Sawaguchi T., Goldman-Rakic P. S. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science. 1991 Feb 22;251(4996):947–950. doi: 10.1126/science.1825731. [DOI] [PubMed] [Google Scholar]
  55. Sawaguchi T., Matsumura M., Kubota K. Delayed response deficit in monkeys by locally disturbed prefrontal neuronal activity by bicuculline. Behav Brain Res. 1988 Dec 1;31(2):193–198. doi: 10.1016/0166-4328(88)90023-x. [DOI] [PubMed] [Google Scholar]
  56. Sawaguchi T., Matsumura M., Kubota K. Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex. Neurosci Res. 1988 Jun;5(5):465–473. doi: 10.1016/0168-0102(88)90030-2. [DOI] [PubMed] [Google Scholar]
  57. Schall J. D., Hanes D. P. Neural basis of saccade target selection in frontal eye field during visual search. Nature. 1993 Dec 2;366(6454):467–469. doi: 10.1038/366467a0. [DOI] [PubMed] [Google Scholar]
  58. Schall J. D., Hanes D. P., Thompson K. G., King D. J. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J Neurosci. 1995 Oct;15(10):6905–6918. doi: 10.1523/JNEUROSCI.15-10-06905.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Schein S. J., Desimone R. Spectral properties of V4 neurons in the macaque. J Neurosci. 1990 Oct;10(10):3369–3389. doi: 10.1523/JNEUROSCI.10-10-03369.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Shindy W. W., Posley K. A., Fuster J. M. Reversible deficit in haptic delay tasks from cooling prefrontal cortex. Cereb Cortex. 1994 Jul-Aug;4(4):443–450. doi: 10.1093/cercor/4.4.443. [DOI] [PubMed] [Google Scholar]
  61. Spitzer H., Desimone R., Moran J. Increased attention enhances both behavioral and neuronal performance. Science. 1988 Apr 15;240(4850):338–340. doi: 10.1126/science.3353728. [DOI] [PubMed] [Google Scholar]
  62. Spitzer H., Richmond B. J. Task difficulty: ignoring, attending to, and discriminating a visual stimulus yield progressively more activity in inferior temporal neurons. Exp Brain Res. 1991;83(2):340–348. doi: 10.1007/BF00231157. [DOI] [PubMed] [Google Scholar]
  63. Steinmetz M. A., Connor C. E., Constantinidis C., McLaughlin J. R. Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. J Neurophysiol. 1994 Aug;72(2):1020–1023. doi: 10.1152/jn.1994.72.2.1020. [DOI] [PubMed] [Google Scholar]
  64. Steinmetz M. A., Constantinidis C. Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb Cortex. 1995 Sep-Oct;5(5):448–456. doi: 10.1093/cercor/5.5.448. [DOI] [PubMed] [Google Scholar]
  65. Suzuki W. A., Miller E. K., Desimone R. Object and place memory in the macaque entorhinal cortex. J Neurophysiol. 1997 Aug;78(2):1062–1081. doi: 10.1152/jn.1997.78.2.1062. [DOI] [PubMed] [Google Scholar]
  66. Treisman A. M. Strategies and models of selective attention. Psychol Rev. 1969 May;76(3):282–299. doi: 10.1037/h0027242. [DOI] [PubMed] [Google Scholar]
  67. Treisman A., Sato S. Conjunction search revisited. J Exp Psychol Hum Percept Perform. 1990 Aug;16(3):459–478. doi: 10.1037//0096-1523.16.3.459. [DOI] [PubMed] [Google Scholar]
  68. Treue S., Maunsell J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature. 1996 Aug 8;382(6591):539–541. doi: 10.1038/382539a0. [DOI] [PubMed] [Google Scholar]
  69. Ungerleider L. G. Functional brain imaging studies of cortical mechanisms for memory. Science. 1995 Nov 3;270(5237):769–775. doi: 10.1126/science.270.5237.769. [DOI] [PubMed] [Google Scholar]
  70. Ungerleider L. G., Gaffan D., Pelak V. S. Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res. 1989;76(3):473–484. doi: 10.1007/BF00248903. [DOI] [PubMed] [Google Scholar]
  71. Ungerleider L. G., Haxby J. V. 'What' and 'where' in the human brain. Curr Opin Neurobiol. 1994 Apr;4(2):157–165. doi: 10.1016/0959-4388(94)90066-3. [DOI] [PubMed] [Google Scholar]
  72. Vogels R., Orban G. A. Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. J Neurophysiol. 1994 Apr;71(4):1428–1451. doi: 10.1152/jn.1994.71.4.1428. [DOI] [PubMed] [Google Scholar]
  73. Webster M. J., Bachevalier J., Ungerleider L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex. 1994 Sep-Oct;4(5):470–483. doi: 10.1093/cercor/4.5.470. [DOI] [PubMed] [Google Scholar]
  74. Wilson F. A., Scalaidhe S. P., Goldman-Rakic P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science. 1993 Jun 25;260(5116):1955–1958. doi: 10.1126/science.8316836. [DOI] [PubMed] [Google Scholar]
  75. Wolfe J. M., Cave K. R., Franzel S. L. Guided search: an alternative to the feature integration model for visual search. J Exp Psychol Hum Percept Perform. 1989 Aug;15(3):419–433. doi: 10.1037//0096-1523.15.3.419. [DOI] [PubMed] [Google Scholar]
  76. Zeki S. M. Colour coding in rhesus monkey prestriate cortex. Brain Res. 1973 Apr 27;53(2):422–427. doi: 10.1016/0006-8993(73)90227-8. [DOI] [PubMed] [Google Scholar]
  77. Zeki S. M. Cortical projections from two prestriate areas in the monkey. Brain Res. 1971 Nov;34(1):19–35. doi: 10.1016/0006-8993(71)90348-9. [DOI] [PubMed] [Google Scholar]
  78. Zeki S. Are areas TEO and PIT of monkey visual cortex wholly distinct from the fourth visual complex (V4 complex)? Proc Biol Sci. 1996 Nov 22;263(1376):1539–1544. doi: 10.1098/rspb.1996.0225. [DOI] [PubMed] [Google Scholar]
  79. Zeki S. The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond B Biol Sci. 1983 Mar 22;217(1209):449–470. doi: 10.1098/rspb.1983.0020. [DOI] [PubMed] [Google Scholar]
  80. di Pellegrino G., Wise S. P. Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J Neurosci. 1993 Mar;13(3):1227–1243. doi: 10.1523/JNEUROSCI.13-03-01227.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES