Abstract
The selective nature of human perception and action implies a modulatory interaction between sensorimotor processes and attentional processes. This paper explores the use of functional imaging in humans to explore the mechanisms of perceptual selection and the fate of irrelevant stimuli that are not selected. Experiments with positron emission tomography show that two qualitatively different patterns of modulation of cerebral blood flow can be observed in experiments where non-spatial visual attention and auditory attention are manipulated. These patterns of modulation of cerebral blood flow modulation can be described as gain control and bias signal mechanisms. In visual and auditory cortex, the dominant change in cerebral blood flow associated with attention to either modality is related to a bias signal. The relation of these patterns of modulation to attentional effects that have been observed in single neurons is discussed. The existence of mechanisms for selective perception raises the more general question of whether irrelevant ignored stimuli are nevertheless perceived. Lavie's theory of attention proposes that the degree to which ignored stimuli are processed varies depending on the perceptual load of the current task. Evidence from behavioural and functional magnetic resonance imaging studies of ignored visual motion processing is presented in support of this proposal.
Full Text
The Full Text of this article is available as a PDF (270.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barbas H., Mesulam M. M. Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience. 1985 Jul;15(3):619–637. doi: 10.1016/0306-4522(85)90064-8. [DOI] [PubMed] [Google Scholar]
- Binder J. R., Rao S. M., Hammeke T. A., Frost J. A., Bandettini P. A., Hyde J. S. Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. Brain Res Cogn Brain Res. 1994 Jul;2(1):31–38. doi: 10.1016/0926-6410(94)90018-3. [DOI] [PubMed] [Google Scholar]
- Büchel C., Friston K. J. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex. 1997 Dec;7(8):768–778. doi: 10.1093/cercor/7.8.768. [DOI] [PubMed] [Google Scholar]
- Cavada C., Goldman-Rakic P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol. 1989 Sep 22;287(4):422–445. doi: 10.1002/cne.902870403. [DOI] [PubMed] [Google Scholar]
- Chaudhuri A. Modulation of the motion aftereffect by selective attention. Nature. 1990 Mar 1;344(6261):60–62. doi: 10.1038/344060a0. [DOI] [PubMed] [Google Scholar]
- Chelazzi L., Miller E. K., Duncan J., Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993 May 27;363(6427):345–347. doi: 10.1038/363345a0. [DOI] [PubMed] [Google Scholar]
- Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., Petersen S. E. Attentional modulation of neural processing of shape, color, and velocity in humans. Science. 1990 Jun 22;248(4962):1556–1559. doi: 10.1126/science.2360050. [DOI] [PubMed] [Google Scholar]
- Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., Petersen S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci. 1991 Aug;11(8):2383–2402. doi: 10.1523/JNEUROSCI.11-08-02383.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbetta M., Shulman G. L., Miezin F. M., Petersen S. E. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science. 1995 Nov 3;270(5237):802–805. doi: 10.1126/science.270.5237.802. [DOI] [PubMed] [Google Scholar]
- Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
- Desimone R., Wessinger M., Thomas L., Schneider W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb Symp Quant Biol. 1990;55:963–971. doi: 10.1101/sqb.1990.055.01.090. [DOI] [PubMed] [Google Scholar]
- Elliott R., Dolan R. J. The neural response in short-term visual recognition memory for perceptual conjunctions. Neuroimage. 1998 Jan;7(1):14–22. doi: 10.1006/nimg.1997.0310. [DOI] [PubMed] [Google Scholar]
- Ferrera V. P., Rudolph K. K., Maunsell J. H. Responses of neurons in the parietal and temporal visual pathways during a motion task. J Neurosci. 1994 Oct;14(10):6171–6186. doi: 10.1523/JNEUROSCI.14-10-06171.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frith C. D., Friston K. J. The role of the thalamus in "top down" modulation of attention to sound. Neuroimage. 1996 Dec;4(3 Pt 1):210–215. doi: 10.1006/nimg.1996.0072. [DOI] [PubMed] [Google Scholar]
- Haenny P. E., Maunsell J. H., Schiller P. H. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp Brain Res. 1988;69(2):245–259. doi: 10.1007/BF00247570. [DOI] [PubMed] [Google Scholar]
- Hillyard S. A., Woldorff M., Mangun G. R., Hansen J. C. Mechanisms of early selective attention in auditory and visual modalities. Electroencephalogr Clin Neurophysiol Suppl. 1987;39:317–324. [PubMed] [Google Scholar]
- Kwong K. K., Belliveau J. W., Chesler D. A., Goldberg I. E., Weisskoff R. M., Poncelet B. P., Kennedy D. N., Hoppel B. E., Cohen M. S., Turner R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675–5679. doi: 10.1073/pnas.89.12.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lavie N. Perceptual load as a necessary condition for selective attention. J Exp Psychol Hum Percept Perform. 1995 Jun;21(3):451–468. doi: 10.1037//0096-1523.21.3.451. [DOI] [PubMed] [Google Scholar]
- Lavie N., Tsal Y. Perceptual load as a major determinant of the locus of selection in visual attention. Percept Psychophys. 1994 Aug;56(2):183–197. doi: 10.3758/bf03213897. [DOI] [PubMed] [Google Scholar]
- Luck S. J., Chelazzi L., Hillyard S. A., Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997 Jan;77(1):24–42. doi: 10.1152/jn.1997.77.1.24. [DOI] [PubMed] [Google Scholar]
- Moran J., Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985 Aug 23;229(4715):782–784. doi: 10.1126/science.4023713. [DOI] [PubMed] [Google Scholar]
- O'Craven K. M., Rosen B. R., Kwong K. K., Treisman A., Savoy R. L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron. 1997 Apr;18(4):591–598. doi: 10.1016/s0896-6273(00)80300-1. [DOI] [PubMed] [Google Scholar]
- Paus T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia. 1996 Jun;34(6):475–483. doi: 10.1016/0028-3932(95)00134-4. [DOI] [PubMed] [Google Scholar]
- Petrides M., Iversen S. D. Cross-modal matching and the primate frontal cortex. Science. 1976 Jun 4;192(4243):1023–1024. doi: 10.1126/science.818708. [DOI] [PubMed] [Google Scholar]
- Petrides M., Iversen S. D. The effect of selective anterior and posterior association cortex lesions in the monkey on performance of a visual-auditory compound discrimination test. Neuropsychologia. 1978;16(5):527–537. doi: 10.1016/0028-3932(78)90080-5. [DOI] [PubMed] [Google Scholar]
- Price C., Wise R., Ramsay S., Friston K., Howard D., Patterson K., Frackowiak R. Regional response differences within the human auditory cortex when listening to words. Neurosci Lett. 1992 Nov 9;146(2):179–182. doi: 10.1016/0304-3940(92)90072-f. [DOI] [PubMed] [Google Scholar]
- Rees G., Frackowiak R., Frith C. Two modulatory effects of attention that mediate object categorization in human cortex. Science. 1997 Feb 7;275(5301):835–838. doi: 10.1126/science.275.5301.835. [DOI] [PubMed] [Google Scholar]
- Rees G., Frith C. D., Lavie N. Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science. 1997 Nov 28;278(5343):1616–1619. doi: 10.1126/science.278.5343.1616. [DOI] [PubMed] [Google Scholar]
- Rees G., Howseman A., Josephs O., Frith C. D., Friston K. J., Frackowiak R. S., Turner R. Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage. 1997 Nov;6(4):270–278. doi: 10.1006/nimg.1997.0300. [DOI] [PubMed] [Google Scholar]
- Sadato N., Ibañez V., Campbell G., Deiber M. P., Le Bihan D., Hallett M. Frequency-dependent changes of regional cerebral blood flow during finger movements: functional MRI compared to PET. J Cereb Blood Flow Metab. 1997 Jun;17(6):670–679. doi: 10.1097/00004647-199706000-00008. [DOI] [PubMed] [Google Scholar]
- Shulman G. L. Attentional effects of adaptation of rotary motion in the plane. Perception. 1993;22(8):947–961. doi: 10.1068/p220947. [DOI] [PubMed] [Google Scholar]
- Tootell R. B., Reppas J. B., Dale A. M., Look R. B., Sereno M. I., Malach R., Brady T. J., Rosen B. R. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature. 1995 May 11;375(6527):139–141. doi: 10.1038/375139a0. [DOI] [PubMed] [Google Scholar]
- Treisman A. M., Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980 Jan;12(1):97–136. doi: 10.1016/0010-0285(80)90005-5. [DOI] [PubMed] [Google Scholar]
- Watson J. D., Myers R., Frackowiak R. S., Hajnal J. V., Woods R. P., Mazziotta J. C., Shipp S., Zeki S. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex. 1993 Mar-Apr;3(2):79–94. doi: 10.1093/cercor/3.2.79. [DOI] [PubMed] [Google Scholar]
- Woldorff M. G., Gallen C. C., Hampson S. A., Hillyard S. A., Pantev C., Sobel D., Bloom F. E. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722–8726. doi: 10.1073/pnas.90.18.8722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeki S., Watson J. D., Lueck C. J., Friston K. J., Kennard C., Frackowiak R. S. A direct demonstration of functional specialization in human visual cortex. J Neurosci. 1991 Mar;11(3):641–649. doi: 10.1523/JNEUROSCI.11-03-00641.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]